已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A machine learning algorithm-based predictive model for pressure injury risk in emergency patients: A prospective cohort study

前瞻性队列研究 医学 队列 风险模型 压力伤 风险评估 急诊科 队列研究 急诊医学 机器学习 医疗急救 计算机科学 风险分析(工程) 内科学 计算机安全 护理部
作者
Wei Li,Honglei Lv,Chengsong Yue,Ying Yao,Ning Gao,Qianwen Chai,Mei Lü
出处
期刊:International Emergency Nursing [Elsevier]
卷期号:74: 101419-101419
标识
DOI:10.1016/j.ienj.2024.101419
摘要

To construct pressure injury risk prediction models for emergency patients based on different machine learning algorithms, to optimize the best model, and to provide a suitable assessment tool for preventing the occurrence of pressure injuries in emergency patients. A convenience sampling was used to select 312 patients admitted to the emergency department of a tertiary care hospital in Tianjin, China, from May 2022 to March 2023, and the patients were divided into a modeling group (n = 218) and a validation group (n = 94) in a 7:3 ratio. Based on the results of one-factor logistic regression analysis in the modeling group, three machine learning models, namely, logistic regression, decision tree, and neural network, were used to establish a prediction model for pressure injury in emergency patients and compare their prediction effects. The optimal model was selected for external validation of the model. The incidence of pressure injuries in emergency patients was 8.97 %, 64.52 % of pressure injuries occurred in the sacrococcygeal region, and 64.52 % were staged as stage 1. Serum albumin level, incontinence, perception, and mobility were independent risk factors for pressure injuries in emergency patients (P < 0.05), and the area under the ROC curve of the three models was 0.944–0.959, sensitivity was 91.8–95.5 %, specificity was 72.2–90.9 %, and the Yoden index was 0.677–0.802; the decision tree was the best model that The area under the ROC curve for the validation group was 0.866 (95 % CI: 0.688–1.000), with a sensitivity of 89.8 %, a specificity of 83.3 %, and a Yoden index of 0.731. The decision tree model has the best predictive efficacy and is suitable for individualized risk prediction of pressure injuries in emergency medicine specialties, which provides a reference for the prevention and early intervention of pressure injuries in emergency patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一只大鸭梨完成签到,获得积分10
刚刚
思源应助gucci采纳,获得10
1秒前
1秒前
李健的粉丝团团长应助wei采纳,获得10
1秒前
LY发布了新的文献求助10
1秒前
11发布了新的文献求助10
3秒前
大个应助接受所有饼干采纳,获得10
4秒前
5秒前
称心剑鬼发布了新的文献求助10
6秒前
6秒前
Lukomere发布了新的文献求助10
7秒前
楼醉山完成签到,获得积分10
9秒前
可爱的函函应助井盖发采纳,获得10
11秒前
caixukun发布了新的文献求助10
12秒前
猫小乐C完成签到,获得积分10
12秒前
guojingjing发布了新的文献求助10
13秒前
定位心海的锚完成签到,获得积分10
14秒前
称心剑鬼完成签到,获得积分10
15秒前
zhou269完成签到,获得积分10
15秒前
jinan完成签到,获得积分10
16秒前
17秒前
20秒前
jinan发布了新的文献求助10
21秒前
Criminology34举报饼饼求助涉嫌违规
21秒前
21秒前
22秒前
22秒前
天天快乐应助keke采纳,获得10
26秒前
科研通AI6应助Lyon采纳,获得10
27秒前
28秒前
汉堡包应助如意修洁采纳,获得10
29秒前
gucci发布了新的文献求助10
29秒前
31秒前
31秒前
可爱从霜发布了新的文献求助10
32秒前
32秒前
上官若男应助酷酷的可仁采纳,获得10
33秒前
33秒前
33秒前
kk完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355874
求助须知:如何正确求助?哪些是违规求助? 4487717
关于积分的说明 13970886
捐赠科研通 4388491
什么是DOI,文献DOI怎么找? 2411104
邀请新用户注册赠送积分活动 1403650
关于科研通互助平台的介绍 1377279