A machine learning algorithm-based predictive model for pressure injury risk in emergency patients: A prospective cohort study

前瞻性队列研究 医学 队列 风险模型 压力伤 风险评估 急诊科 队列研究 急诊医学 机器学习 医疗急救 计算机科学 风险分析(工程) 内科学 计算机安全 护理部
作者
Wei Li,Honglei Lv,Chengsong Yue,Ying Yao,Ning Gao,Qianwen Chai,Mei Lü
出处
期刊:International Emergency Nursing [Elsevier BV]
卷期号:74: 101419-101419
标识
DOI:10.1016/j.ienj.2024.101419
摘要

To construct pressure injury risk prediction models for emergency patients based on different machine learning algorithms, to optimize the best model, and to provide a suitable assessment tool for preventing the occurrence of pressure injuries in emergency patients. A convenience sampling was used to select 312 patients admitted to the emergency department of a tertiary care hospital in Tianjin, China, from May 2022 to March 2023, and the patients were divided into a modeling group (n = 218) and a validation group (n = 94) in a 7:3 ratio. Based on the results of one-factor logistic regression analysis in the modeling group, three machine learning models, namely, logistic regression, decision tree, and neural network, were used to establish a prediction model for pressure injury in emergency patients and compare their prediction effects. The optimal model was selected for external validation of the model. The incidence of pressure injuries in emergency patients was 8.97 %, 64.52 % of pressure injuries occurred in the sacrococcygeal region, and 64.52 % were staged as stage 1. Serum albumin level, incontinence, perception, and mobility were independent risk factors for pressure injuries in emergency patients (P < 0.05), and the area under the ROC curve of the three models was 0.944–0.959, sensitivity was 91.8–95.5 %, specificity was 72.2–90.9 %, and the Yoden index was 0.677–0.802; the decision tree was the best model that The area under the ROC curve for the validation group was 0.866 (95 % CI: 0.688–1.000), with a sensitivity of 89.8 %, a specificity of 83.3 %, and a Yoden index of 0.731. The decision tree model has the best predictive efficacy and is suitable for individualized risk prediction of pressure injuries in emergency medicine specialties, which provides a reference for the prevention and early intervention of pressure injuries in emergency patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxdx发布了新的文献求助10
刚刚
田様应助哼哼HA嘿采纳,获得10
刚刚
见澈发布了新的文献求助10
刚刚
崔宏玺发布了新的文献求助10
刚刚
1秒前
1秒前
Bingcai完成签到,获得积分10
1秒前
彭于晏应助zzd采纳,获得10
1秒前
畅快凝丹完成签到 ,获得积分10
2秒前
程蒽发布了新的文献求助10
2秒前
liuting完成签到,获得积分20
3秒前
Mrshi发布了新的文献求助10
3秒前
负责的皮卡丘完成签到,获得积分10
4秒前
打打应助小鲸鱼采纳,获得10
4秒前
orixero应助liao采纳,获得10
4秒前
科研通AI5应助777采纳,获得10
5秒前
5秒前
5秒前
深情安青应助见澈采纳,获得10
6秒前
吴Sehun发布了新的文献求助10
6秒前
6秒前
6秒前
8秒前
NaiZeMu发布了新的文献求助10
9秒前
碳纤维刷完成签到,获得积分10
10秒前
10秒前
10秒前
Avery发布了新的文献求助10
10秒前
Lynn发布了新的文献求助10
10秒前
见澈完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
Mrshi完成签到,获得积分10
12秒前
泉眼发布了新的文献求助10
12秒前
清图发布了新的文献求助10
13秒前
WYCheng1发布了新的文献求助10
13秒前
Gmhoo_发布了新的文献求助10
13秒前
眼睛大的亦玉完成签到,获得积分20
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5004238
求助须知:如何正确求助?哪些是违规求助? 4248464
关于积分的说明 13237041
捐赠科研通 4047786
什么是DOI,文献DOI怎么找? 2214478
邀请新用户注册赠送积分活动 1224518
关于科研通互助平台的介绍 1144955