A machine learning algorithm-based predictive model for pressure injury risk in emergency patients: A prospective cohort study

逻辑回归 接收机工作特性 前瞻性队列研究 医学 决策树 入射(几何) 风险因素 急诊科 急诊医学 机器学习 计算机科学 算法 外科 内科学 数学 精神科 几何学
作者
Wei Li,Honglei Lv,Chenqi Yue,Ying Yao,Ning Gao,Qianwen Chai,Minghui Lu
出处
期刊:International Emergency Nursing [Elsevier]
卷期号:74: 101419-101419 被引量:5
标识
DOI:10.1016/j.ienj.2024.101419
摘要

To construct pressure injury risk prediction models for emergency patients based on different machine learning algorithms, to optimize the best model, and to provide a suitable assessment tool for preventing the occurrence of pressure injuries in emergency patients. A convenience sampling was used to select 312 patients admitted to the emergency department of a tertiary care hospital in Tianjin, China, from May 2022 to March 2023, and the patients were divided into a modeling group (n = 218) and a validation group (n = 94) in a 7:3 ratio. Based on the results of one-factor logistic regression analysis in the modeling group, three machine learning models, namely, logistic regression, decision tree, and neural network, were used to establish a prediction model for pressure injury in emergency patients and compare their prediction effects. The optimal model was selected for external validation of the model. The incidence of pressure injuries in emergency patients was 8.97 %, 64.52 % of pressure injuries occurred in the sacrococcygeal region, and 64.52 % were staged as stage 1. Serum albumin level, incontinence, perception, and mobility were independent risk factors for pressure injuries in emergency patients (P < 0.05), and the area under the ROC curve of the three models was 0.944–0.959, sensitivity was 91.8–95.5 %, specificity was 72.2–90.9 %, and the Yoden index was 0.677–0.802; the decision tree was the best model that The area under the ROC curve for the validation group was 0.866 (95 % CI: 0.688–1.000), with a sensitivity of 89.8 %, a specificity of 83.3 %, and a Yoden index of 0.731. The decision tree model has the best predictive efficacy and is suitable for individualized risk prediction of pressure injuries in emergency medicine specialties, which provides a reference for the prevention and early intervention of pressure injuries in emergency patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
刘骁萱发布了新的文献求助10
1秒前
研友_VZG64n完成签到,获得积分10
1秒前
小蘑菇应助bafanbqg采纳,获得10
1秒前
无心的无敌完成签到,获得积分10
1秒前
李健的粉丝团团长应助Kaka采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
irenelijiaaa完成签到 ,获得积分10
2秒前
Orange应助粗心的蜜蜂采纳,获得10
2秒前
whatislove完成签到,获得积分10
3秒前
李升洋发布了新的文献求助10
3秒前
3秒前
SJR完成签到,获得积分10
4秒前
4秒前
朴素洋葱发布了新的文献求助10
4秒前
4秒前
Probucola完成签到 ,获得积分10
5秒前
个性的紫菜应助YangSY采纳,获得10
5秒前
5秒前
CodeCraft应助郭慧杰采纳,获得10
6秒前
6秒前
邓李梅发布了新的文献求助10
6秒前
牛马一生发布了新的文献求助10
7秒前
7秒前
光军发布了新的文献求助10
7秒前
zyy完成签到,获得积分10
8秒前
万能图书馆应助刘骁萱采纳,获得10
8秒前
肥肥些发布了新的文献求助20
8秒前
cherry发布了新的文献求助10
9秒前
Sue发布了新的文献求助10
9秒前
9秒前
SJR关闭了SJR文献求助
10秒前
JamesPei应助夏夏采纳,获得10
10秒前
祁尒发布了新的文献求助10
10秒前
王李俊完成签到 ,获得积分10
11秒前
11秒前
北还北完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652096
求助须知:如何正确求助?哪些是违规求助? 4786741
关于积分的说明 15058468
捐赠科研通 4810724
什么是DOI,文献DOI怎么找? 2573366
邀请新用户注册赠送积分活动 1529262
关于科研通互助平台的介绍 1488171