清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A machine learning algorithm-based predictive model for pressure injury risk in emergency patients: A prospective cohort study

前瞻性队列研究 医学 队列 风险模型 压力伤 风险评估 急诊科 队列研究 急诊医学 机器学习 医疗急救 计算机科学 风险分析(工程) 内科学 计算机安全 护理部
作者
Wei Li,Honglei Lv,Chengsong Yue,Ying Yao,Ning Gao,Qianwen Chai,Mei Lü
出处
期刊:International Emergency Nursing [Elsevier BV]
卷期号:74: 101419-101419
标识
DOI:10.1016/j.ienj.2024.101419
摘要

To construct pressure injury risk prediction models for emergency patients based on different machine learning algorithms, to optimize the best model, and to provide a suitable assessment tool for preventing the occurrence of pressure injuries in emergency patients. A convenience sampling was used to select 312 patients admitted to the emergency department of a tertiary care hospital in Tianjin, China, from May 2022 to March 2023, and the patients were divided into a modeling group (n = 218) and a validation group (n = 94) in a 7:3 ratio. Based on the results of one-factor logistic regression analysis in the modeling group, three machine learning models, namely, logistic regression, decision tree, and neural network, were used to establish a prediction model for pressure injury in emergency patients and compare their prediction effects. The optimal model was selected for external validation of the model. The incidence of pressure injuries in emergency patients was 8.97 %, 64.52 % of pressure injuries occurred in the sacrococcygeal region, and 64.52 % were staged as stage 1. Serum albumin level, incontinence, perception, and mobility were independent risk factors for pressure injuries in emergency patients (P < 0.05), and the area under the ROC curve of the three models was 0.944–0.959, sensitivity was 91.8–95.5 %, specificity was 72.2–90.9 %, and the Yoden index was 0.677–0.802; the decision tree was the best model that The area under the ROC curve for the validation group was 0.866 (95 % CI: 0.688–1.000), with a sensitivity of 89.8 %, a specificity of 83.3 %, and a Yoden index of 0.731. The decision tree model has the best predictive efficacy and is suitable for individualized risk prediction of pressure injuries in emergency medicine specialties, which provides a reference for the prevention and early intervention of pressure injuries in emergency patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
15秒前
充电宝应助科研通管家采纳,获得10
29秒前
YY驳回了打打应助
47秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Qian完成签到 ,获得积分10
1分钟前
白天亮完成签到,获得积分10
2分钟前
宇文非笑完成签到 ,获得积分10
2分钟前
2分钟前
游鱼完成签到,获得积分10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
2分钟前
传奇完成签到 ,获得积分10
2分钟前
2分钟前
什么也难不倒我完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
YY给YY的求助进行了留言
3分钟前
缓慢的忆枫完成签到,获得积分20
3分钟前
zpc猪猪完成签到,获得积分10
3分钟前
3分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
文献搬运工完成签到 ,获得积分10
4分钟前
GIA完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
陶世立完成签到 ,获得积分10
5分钟前
轻松的甜瓜完成签到,获得积分10
6分钟前
直率的笑翠完成签到 ,获得积分10
6分钟前
英俊的铭应助科研通管家采纳,获得10
6分钟前
nojego完成签到,获得积分10
6分钟前
光合作用完成签到,获得积分10
6分钟前
7分钟前
7分钟前
YY发布了新的文献求助30
7分钟前
量子星尘发布了新的文献求助10
7分钟前
8分钟前
8分钟前
量子星尘发布了新的文献求助10
8分钟前
沉沉完成签到 ,获得积分0
9分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015250
求助须知:如何正确求助?哪些是违规求助? 3555212
关于积分的说明 11317932
捐赠科研通 3288595
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983