A machine learning algorithm-based predictive model for pressure injury risk in emergency patients: A prospective cohort study

逻辑回归 接收机工作特性 前瞻性队列研究 医学 决策树 入射(几何) 风险因素 急诊科 急诊医学 机器学习 计算机科学 算法 外科 内科学 数学 精神科 几何学
作者
Wei Li,Honglei Lv,Chenqi Yue,Ying Yao,Ning Gao,Qianwen Chai,Minghui Lu
出处
期刊:International Emergency Nursing [Elsevier]
卷期号:74: 101419-101419 被引量:5
标识
DOI:10.1016/j.ienj.2024.101419
摘要

To construct pressure injury risk prediction models for emergency patients based on different machine learning algorithms, to optimize the best model, and to provide a suitable assessment tool for preventing the occurrence of pressure injuries in emergency patients. A convenience sampling was used to select 312 patients admitted to the emergency department of a tertiary care hospital in Tianjin, China, from May 2022 to March 2023, and the patients were divided into a modeling group (n = 218) and a validation group (n = 94) in a 7:3 ratio. Based on the results of one-factor logistic regression analysis in the modeling group, three machine learning models, namely, logistic regression, decision tree, and neural network, were used to establish a prediction model for pressure injury in emergency patients and compare their prediction effects. The optimal model was selected for external validation of the model. The incidence of pressure injuries in emergency patients was 8.97 %, 64.52 % of pressure injuries occurred in the sacrococcygeal region, and 64.52 % were staged as stage 1. Serum albumin level, incontinence, perception, and mobility were independent risk factors for pressure injuries in emergency patients (P < 0.05), and the area under the ROC curve of the three models was 0.944–0.959, sensitivity was 91.8–95.5 %, specificity was 72.2–90.9 %, and the Yoden index was 0.677–0.802; the decision tree was the best model that The area under the ROC curve for the validation group was 0.866 (95 % CI: 0.688–1.000), with a sensitivity of 89.8 %, a specificity of 83.3 %, and a Yoden index of 0.731. The decision tree model has the best predictive efficacy and is suitable for individualized risk prediction of pressure injuries in emergency medicine specialties, which provides a reference for the prevention and early intervention of pressure injuries in emergency patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
泡泡泡芙发布了新的文献求助10
2秒前
2秒前
2秒前
Lynn怯霜静完成签到,获得积分10
2秒前
NexusExplorer应助王王采纳,获得10
3秒前
马仕达完成签到,获得积分10
3秒前
莫1031完成签到 ,获得积分10
3秒前
jun完成签到,获得积分10
4秒前
能干大树发布了新的文献求助10
5秒前
马仕达发布了新的文献求助10
5秒前
5秒前
6秒前
Wang完成签到,获得积分10
6秒前
西瓜发布了新的文献求助10
7秒前
8秒前
李浩然发布了新的文献求助10
9秒前
10秒前
酷波er应助Jack80采纳,获得30
10秒前
晴雨发布了新的文献求助10
11秒前
11秒前
稳重的小刺猬完成签到,获得积分10
11秒前
Efaith完成签到,获得积分10
11秒前
77发布了新的文献求助10
13秒前
科研通AI6应助怕黑书翠采纳,获得10
14秒前
晨雾发布了新的文献求助10
15秒前
15秒前
爆米花应助李_Steven采纳,获得10
15秒前
斯文败类应助李_Steven采纳,获得10
15秒前
李健的小迷弟应助Efaith采纳,获得10
15秒前
科研通AI6应助李_Steven采纳,获得10
15秒前
完美世界应助李_Steven采纳,获得10
16秒前
18秒前
man完成签到,获得积分10
19秒前
wsj发布了新的文献求助30
19秒前
健壮的土豆完成签到 ,获得积分10
19秒前
chaxie完成签到,获得积分10
19秒前
赘婿应助libs采纳,获得10
19秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620797
求助须知:如何正确求助?哪些是违规求助? 4705375
关于积分的说明 14931806
捐赠科研通 4763300
什么是DOI,文献DOI怎么找? 2551231
邀请新用户注册赠送积分活动 1513783
关于科研通互助平台的介绍 1474672