已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A machine learning algorithm-based predictive model for pressure injury risk in emergency patients: A prospective cohort study

前瞻性队列研究 医学 队列 风险模型 压力伤 风险评估 急诊科 队列研究 急诊医学 机器学习 医疗急救 计算机科学 风险分析(工程) 内科学 计算机安全 护理部
作者
Wei Li,Honglei Lv,Chengsong Yue,Ying Yao,Ning Gao,Qianwen Chai,Mei Lü
出处
期刊:International Emergency Nursing [Elsevier]
卷期号:74: 101419-101419
标识
DOI:10.1016/j.ienj.2024.101419
摘要

To construct pressure injury risk prediction models for emergency patients based on different machine learning algorithms, to optimize the best model, and to provide a suitable assessment tool for preventing the occurrence of pressure injuries in emergency patients. A convenience sampling was used to select 312 patients admitted to the emergency department of a tertiary care hospital in Tianjin, China, from May 2022 to March 2023, and the patients were divided into a modeling group (n = 218) and a validation group (n = 94) in a 7:3 ratio. Based on the results of one-factor logistic regression analysis in the modeling group, three machine learning models, namely, logistic regression, decision tree, and neural network, were used to establish a prediction model for pressure injury in emergency patients and compare their prediction effects. The optimal model was selected for external validation of the model. The incidence of pressure injuries in emergency patients was 8.97 %, 64.52 % of pressure injuries occurred in the sacrococcygeal region, and 64.52 % were staged as stage 1. Serum albumin level, incontinence, perception, and mobility were independent risk factors for pressure injuries in emergency patients (P < 0.05), and the area under the ROC curve of the three models was 0.944–0.959, sensitivity was 91.8–95.5 %, specificity was 72.2–90.9 %, and the Yoden index was 0.677–0.802; the decision tree was the best model that The area under the ROC curve for the validation group was 0.866 (95 % CI: 0.688–1.000), with a sensitivity of 89.8 %, a specificity of 83.3 %, and a Yoden index of 0.731. The decision tree model has the best predictive efficacy and is suitable for individualized risk prediction of pressure injuries in emergency medicine specialties, which provides a reference for the prevention and early intervention of pressure injuries in emergency patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烊驼完成签到,获得积分10
刚刚
Mtoc完成签到 ,获得积分10
1秒前
4秒前
5秒前
淡淡十三完成签到,获得积分10
6秒前
丰知然应助孙文杰采纳,获得10
8秒前
淡淡十三发布了新的文献求助10
10秒前
Sally完成签到,获得积分10
10秒前
饼子完成签到,获得积分10
12秒前
杰哥完成签到,获得积分10
14秒前
16秒前
17秒前
21秒前
聪明豁发布了新的文献求助10
21秒前
orixero应助科研通管家采纳,获得10
22秒前
乐乐应助科研通管家采纳,获得10
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
22秒前
Hello应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
杳鸢应助刘欣美子采纳,获得30
25秒前
carrieschen发布了新的文献求助30
26秒前
郑思榆完成签到 ,获得积分10
29秒前
leslie完成签到 ,获得积分10
30秒前
活泼啤酒完成签到 ,获得积分10
34秒前
34秒前
聪明豁完成签到,获得积分10
35秒前
李_小_八完成签到,获得积分10
41秒前
好奇的书蛋完成签到,获得积分10
42秒前
永远少年完成签到,获得积分10
44秒前
邪王真眼完成签到 ,获得积分10
45秒前
完美世界应助叶凡采纳,获得10
47秒前
BA1完成签到,获得积分10
49秒前
kaustal完成签到,获得积分10
50秒前
嘉心糖发布了新的文献求助200
50秒前
方方在努力完成签到,获得积分10
50秒前
春山完成签到 ,获得积分10
56秒前
103921wjk完成签到,获得积分10
56秒前
欢呼的万天完成签到,获得积分10
58秒前
小二郎应助zjl123采纳,获得10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303141
求助须知:如何正确求助?哪些是违规求助? 2937436
关于积分的说明 8482048
捐赠科研通 2611331
什么是DOI,文献DOI怎么找? 1425790
科研通“疑难数据库(出版商)”最低求助积分说明 662434
邀请新用户注册赠送积分活动 646923