A machine learning algorithm-based predictive model for pressure injury risk in emergency patients: A prospective cohort study

逻辑回归 接收机工作特性 前瞻性队列研究 医学 决策树 入射(几何) 风险因素 急诊科 急诊医学 机器学习 计算机科学 算法 外科 内科学 数学 精神科 几何学
作者
Wei Li,Honglei Lv,Chenqi Yue,Ying Yao,Ning Gao,Qianwen Chai,Minghui Lu
出处
期刊:International Emergency Nursing [Elsevier]
卷期号:74: 101419-101419 被引量:5
标识
DOI:10.1016/j.ienj.2024.101419
摘要

To construct pressure injury risk prediction models for emergency patients based on different machine learning algorithms, to optimize the best model, and to provide a suitable assessment tool for preventing the occurrence of pressure injuries in emergency patients. A convenience sampling was used to select 312 patients admitted to the emergency department of a tertiary care hospital in Tianjin, China, from May 2022 to March 2023, and the patients were divided into a modeling group (n = 218) and a validation group (n = 94) in a 7:3 ratio. Based on the results of one-factor logistic regression analysis in the modeling group, three machine learning models, namely, logistic regression, decision tree, and neural network, were used to establish a prediction model for pressure injury in emergency patients and compare their prediction effects. The optimal model was selected for external validation of the model. The incidence of pressure injuries in emergency patients was 8.97 %, 64.52 % of pressure injuries occurred in the sacrococcygeal region, and 64.52 % were staged as stage 1. Serum albumin level, incontinence, perception, and mobility were independent risk factors for pressure injuries in emergency patients (P < 0.05), and the area under the ROC curve of the three models was 0.944–0.959, sensitivity was 91.8–95.5 %, specificity was 72.2–90.9 %, and the Yoden index was 0.677–0.802; the decision tree was the best model that The area under the ROC curve for the validation group was 0.866 (95 % CI: 0.688–1.000), with a sensitivity of 89.8 %, a specificity of 83.3 %, and a Yoden index of 0.731. The decision tree model has the best predictive efficacy and is suitable for individualized risk prediction of pressure injuries in emergency medicine specialties, which provides a reference for the prevention and early intervention of pressure injuries in emergency patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静丸子完成签到 ,获得积分10
刚刚
小志完成签到,获得积分10
刚刚
小二郎应助song采纳,获得10
1秒前
汉堡包应助闪电霸王龙采纳,获得30
1秒前
or发布了新的文献求助10
2秒前
科研通AI6应助xiaowang采纳,获得10
2秒前
在水一方应助小怪采纳,获得10
2秒前
Lee完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
科研通AI6应助专利赚赚赚采纳,获得10
3秒前
W66完成签到,获得积分10
3秒前
孤云完成签到 ,获得积分10
3秒前
怡然白竹完成签到 ,获得积分10
3秒前
3秒前
HanZhang完成签到,获得积分10
3秒前
yu完成签到,获得积分10
4秒前
好听的名字完成签到,获得积分10
4秒前
陈醒醒完成签到,获得积分10
4秒前
和璨完成签到,获得积分10
4秒前
阿米巴变变变完成签到,获得积分20
4秒前
HoraceHou完成签到,获得积分20
5秒前
loong发布了新的文献求助10
5秒前
5秒前
wsg发布了新的文献求助10
5秒前
芋泥蛋糕发布了新的文献求助10
5秒前
大虫完成签到,获得积分10
5秒前
yk完成签到 ,获得积分10
5秒前
5秒前
5秒前
6秒前
赵yy应助高小明采纳,获得10
6秒前
7秒前
7秒前
8秒前
FashionBoy应助姚玲采纳,获得10
8秒前
9秒前
10秒前
AIKaikai完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568600
求助须知:如何正确求助?哪些是违规求助? 4653216
关于积分的说明 14704706
捐赠科研通 4595016
什么是DOI,文献DOI怎么找? 2521450
邀请新用户注册赠送积分活动 1493035
关于科研通互助平台的介绍 1463793