Scalable and rapid building damage detection after hurricane Ian using causal Bayesian networks and InSAR imagery

干涉合成孔径雷达 基本事实 遥感 计算机科学 大洪水 合成孔径雷达 贝叶斯网络 卫星图像 环境科学 机器学习 气象学 人工智能 地理 考古
作者
Chenguang Wang,Yepeng Liu,Xiaojian Zhang,Xuechun Li,Vladimir A. Paramygin,Y. Peter Sheng,Xilei Zhao,Susu Xu
出处
期刊:International journal of disaster risk reduction [Elsevier]
卷期号:104: 104371-104371 被引量:1
标识
DOI:10.1016/j.ijdrr.2024.104371
摘要

Timely and accurate assessment of hurricane-induced building damage is crucial for effective post-hurricane response and recovery efforts. Recently, remote sensing technologies provide large-scale optical or Interferometric Synthetic Aperture Radar (InSAR) imagery data immediately after a disastrous event, which can be readily used to conduct rapid building damage assessment. Compared to optical satellite imageries, the Synthetic Aperture Radar can penetrate cloud cover and provide more complete spatial coverage of damaged zone in various weather conditions. However, these InSAR imageries often contain highly noisy and mixed signals induced by co-occurring or co-located building damage, flood, flood/wind-induced vegetation changes, as well as anthropogenic activities, making it challenging to extract accurate building damage information. In this paper, we introduced a causality-informed Bayesian network inference approach for rapid post-hurricane building damage detection from InSAR imagery. This approach encoded complex causal dependencies among wind, flood, building damage, and InSAR imagery using a holistic causal Bayesian network. Based on the causal Bayesian network, we further jointly inferred the large-scale unobserved building damage by fusing the information from InSAR imagery with prior physical models of flood and wind, without the need for ground truth labels. Furthermore, we validated our estimation results in a real-world devastating hurricane—the 2022 Hurricane Ian. We gathered and annotated building damage ground truth data in Lee County, Florida, and compared the introduced method's estimation results with the ground truth and also benchmarked it against state-of-the-art models to assess the effectiveness of our proposed method. The results show that our method advances building damage assessment after hurricanes by accurately reflecting the complex dynamics between wind and flood impacts. Notably, it achieves this without the need for a ground truth label, which is a substantial step forward from traditional methods. Our model registers a 22.6% increase in the Area Under the Curve (AUC) and a 46.29% enhancement in the True Positive Rate (TPR). Moreover, it expedites the detection of building damage, cutting down processing times by up to 83.8%. These improvements mark a considerable leap in efficiency, demonstrating our method's ability to streamline the assessment process markedly over conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
lianqing完成签到,获得积分10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
4秒前
RC_Wang应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
hh应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得30
4秒前
4秒前
Leif应助科研通管家采纳,获得20
4秒前
4秒前
5秒前
5秒前
6秒前
6秒前
忘羡222发布了新的文献求助20
7秒前
丰富猕猴桃完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
JamesPei应助咿咿呀呀采纳,获得10
8秒前
www完成签到,获得积分10
8秒前
科研通AI2S应助Jenny采纳,获得10
9秒前
limin完成签到,获得积分10
10秒前
10秒前
风格完成签到,获得积分10
11秒前
情怀应助专心搞学术采纳,获得20
12秒前
12秒前
zeke发布了新的文献求助10
12秒前
不爱吃糖发布了新的文献求助10
13秒前
852应助冷傲迎梦采纳,获得10
14秒前
陶醉觅夏发布了新的文献求助200
15秒前
15秒前
exile完成签到,获得积分10
16秒前
朱一龙发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824