Scalable and rapid building damage detection after hurricane Ian using causal Bayesian networks and InSAR imagery

干涉合成孔径雷达 基本事实 遥感 计算机科学 大洪水 合成孔径雷达 贝叶斯网络 卫星图像 环境科学 机器学习 气象学 人工智能 地理 考古
作者
Chenguang Wang,Yepeng Liu,Xiaojian Zhang,Xuechun Li,Vladimir A. Paramygin,Y. Peter Sheng,Xilei Zhao,Susu Xu
出处
期刊:International journal of disaster risk reduction [Elsevier]
卷期号:104: 104371-104371 被引量:1
标识
DOI:10.1016/j.ijdrr.2024.104371
摘要

Timely and accurate assessment of hurricane-induced building damage is crucial for effective post-hurricane response and recovery efforts. Recently, remote sensing technologies provide large-scale optical or Interferometric Synthetic Aperture Radar (InSAR) imagery data immediately after a disastrous event, which can be readily used to conduct rapid building damage assessment. Compared to optical satellite imageries, the Synthetic Aperture Radar can penetrate cloud cover and provide more complete spatial coverage of damaged zone in various weather conditions. However, these InSAR imageries often contain highly noisy and mixed signals induced by co-occurring or co-located building damage, flood, flood/wind-induced vegetation changes, as well as anthropogenic activities, making it challenging to extract accurate building damage information. In this paper, we introduced a causality-informed Bayesian network inference approach for rapid post-hurricane building damage detection from InSAR imagery. This approach encoded complex causal dependencies among wind, flood, building damage, and InSAR imagery using a holistic causal Bayesian network. Based on the causal Bayesian network, we further jointly inferred the large-scale unobserved building damage by fusing the information from InSAR imagery with prior physical models of flood and wind, without the need for ground truth labels. Furthermore, we validated our estimation results in a real-world devastating hurricane—the 2022 Hurricane Ian. We gathered and annotated building damage ground truth data in Lee County, Florida, and compared the introduced method's estimation results with the ground truth and also benchmarked it against state-of-the-art models to assess the effectiveness of our proposed method. The results show that our method advances building damage assessment after hurricanes by accurately reflecting the complex dynamics between wind and flood impacts. Notably, it achieves this without the need for a ground truth label, which is a substantial step forward from traditional methods. Our model registers a 22.6% increase in the Area Under the Curve (AUC) and a 46.29% enhancement in the True Positive Rate (TPR). Moreover, it expedites the detection of building damage, cutting down processing times by up to 83.8%. These improvements mark a considerable leap in efficiency, demonstrating our method's ability to streamline the assessment process markedly over conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
超帅冰蝶完成签到,获得积分10
1秒前
阔达故事完成签到,获得积分10
2秒前
3秒前
qiao完成签到,获得积分10
3秒前
Dr.完成签到 ,获得积分10
3秒前
ding应助九点半上课了采纳,获得10
3秒前
Jasper应助AAAAAAAAAAA采纳,获得10
3秒前
Gakay完成签到,获得积分10
4秒前
Zetlynn完成签到,获得积分10
5秒前
愤怒也呵呵完成签到,获得积分10
5秒前
我有一头小毛驴完成签到,获得积分10
5秒前
一枝杷枇完成签到,获得积分20
5秒前
Ming完成签到,获得积分10
5秒前
6秒前
guohezu发布了新的文献求助10
6秒前
ZHAZHA发布了新的文献求助10
6秒前
小小狗完成签到,获得积分10
6秒前
呼呼虫发布了新的文献求助10
6秒前
Itachi12138完成签到,获得积分10
6秒前
内向翰完成签到,获得积分10
6秒前
澎鱼盐完成签到,获得积分10
7秒前
莎莎士比亚完成签到,获得积分10
7秒前
科研通AI2S应助羞涩的高山采纳,获得10
7秒前
wu完成签到,获得积分10
7秒前
7秒前
长安发布了新的文献求助10
7秒前
土豆丝发布了新的文献求助10
8秒前
螃蟹One完成签到 ,获得积分10
8秒前
韭菜盒子完成签到,获得积分10
8秒前
可爱的沛珊完成签到,获得积分10
9秒前
甜辣小泡芙完成签到,获得积分10
9秒前
积极的夏天完成签到 ,获得积分10
10秒前
10秒前
11秒前
12秒前
巩琦完成签到,获得积分10
12秒前
酷酷夜安发布了新的文献求助10
13秒前
AAAAAAAAAAA完成签到,获得积分10
13秒前
高分求助中
Evolution 10000
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158816
求助须知:如何正确求助?哪些是违规求助? 2810026
关于积分的说明 7885324
捐赠科研通 2468805
什么是DOI,文献DOI怎么找? 1314396
科研通“疑难数据库(出版商)”最低求助积分说明 630616
版权声明 602012