First temporal distribution model of ambient air pollutants (PM2.5, PM10, and O3) in Yangon City, Myanmar during 2019–2021

微粒 环境科学 大气科学 空气污染 污染物 露点 空气质量指数 线性回归 污染 气象学 相对湿度 湿度 统计 数学 化学 地理 生态学 生物 有机化学 地质学
作者
Tin Saw Pyae,Kraiwuth Kallawicha
出处
期刊:Environmental Pollution [Elsevier]
卷期号:347: 123718-123718 被引量:3
标识
DOI:10.1016/j.envpol.2024.123718
摘要

Air pollution has emerged as a significant global concern, particularly in urban centers. This study aims to investigate the temporal distribution of air pollutants, including PM2.5, PM10, and O3, utilizing multiple linear regression modeling. Additionally, the research incorporates the calculation of the Air Quality Index (AQI) and Autoregressive Integrated Moving Average (ARIMA) time series modeling to predict the AQI for PM2.5 and PM10. The concentrations and AQI values for PM2.5 ranged from 0 to 93.6 μg/m3 and 0 to 171, respectively, surpassing the Word Health Organization's (WHO) acceptable threshold levels. Similarly, concentrations and AQI values for PM10 ranged from 0.1 to 149.27 μg/m3 and 2–98 μg/m3, respectively, also exceeding WHO standards. Particulate matter pollution exhibited notable peaks during summer and winter. Key meteorological factors, including dew point temperature, relative humidity, and rainfall, showed a significant negative association with all pollutants, while ambient temperature exhibited a significant positive correlation with particulate matter. Multiple linear regression models of particulate matter for winter season demonstrated the highest model performance, explaining most of the variation in particulate matter concentrations. The annual multiple linear regression model for PM2.5 exhibited the most robust performance, explaining 60% of the variation, while the models for PM10 and O3 explained 45% of the variation in their concentrations. Time series modeling projected an increasing trend in the AQI for particulate matter in 2022. The precise and accurate results of this study serve as a valuable reference for developing effective air pollution control strategies and raising awareness of AQI in Myanmar.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壮观砖家发布了新的文献求助20
1秒前
怕孤单应助个qwieid采纳,获得10
2秒前
2秒前
2秒前
Wang发布了新的文献求助30
2秒前
3秒前
Lynn怯霜静发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
jun发布了新的文献求助10
4秒前
晨雾关注了科研通微信公众号
5秒前
苏小狸完成签到,获得积分10
5秒前
5秒前
yaoli0823完成签到,获得积分10
5秒前
辛勤愚志完成签到 ,获得积分10
6秒前
6秒前
岳红健完成签到,获得积分10
6秒前
充电宝应助李浩然采纳,获得10
6秒前
6秒前
7秒前
7秒前
桐桐应助Reut_Hyu采纳,获得10
7秒前
wei发布了新的文献求助10
7秒前
9秒前
9秒前
10秒前
泡泡泡芙发布了新的文献求助10
11秒前
11秒前
11秒前
Lynn怯霜静完成签到,获得积分10
11秒前
NexusExplorer应助王王采纳,获得10
12秒前
马仕达完成签到,获得积分10
12秒前
莫1031完成签到 ,获得积分10
12秒前
jun完成签到,获得积分10
13秒前
能干大树发布了新的文献求助10
14秒前
马仕达发布了新的文献求助10
14秒前
14秒前
15秒前
Wang完成签到,获得积分10
15秒前
西瓜发布了新的文献求助10
16秒前
17秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620797
求助须知:如何正确求助?哪些是违规求助? 4705375
关于积分的说明 14931806
捐赠科研通 4763300
什么是DOI,文献DOI怎么找? 2551231
邀请新用户注册赠送积分活动 1513783
关于科研通互助平台的介绍 1474672