Capturing COPD heterogeneity: anomaly detection and parametric response mapping comparison for phenotyping on chest computed tomography

慢性阻塞性肺病 异常检测 金标准(测试) 医学 潜在类模型 参数统计 异常(物理) 模式识别(心理学) 内科学 放射科 计算机科学 人工智能 数学 统计 机器学习 物理 凝聚态物理
作者
Sílvia D. Almeida,Tobias Norajitra,Carsten T. Lüth,Tassilo Wald,Vivienn Weru,Marco Nolden,Paul F. Jäger,Oyunbileg von Stackelberg,Claus Peter Heußel,Oliver Weinheimer,Jürgen Biederer,Hans‐Ulrich Kauczor,Klaus H. Maier‐Hein
出处
期刊:Frontiers in Medicine [Frontiers Media SA]
卷期号:11
标识
DOI:10.3389/fmed.2024.1360706
摘要

Chronic obstructive pulmonary disease (COPD) poses a substantial global health burden, demanding advanced diagnostic tools for early detection and accurate phenotyping. In this line, this study seeks to enhance COPD characterization on chest computed tomography (CT) by comparing the spatial and quantitative relationships between traditional parametric response mapping (PRM) and a novel self-supervised anomaly detection approach, and to unveil potential additional insights into the dynamic transitional stages of COPD.Non-contrast inspiratory and expiratory CT of 1,310 never-smoker and GOLD 0 individuals and COPD patients (GOLD 1-4) from the COPDGene dataset were retrospectively evaluated. A novel self-supervised anomaly detection approach was applied to quantify lung abnormalities associated with COPD, as regional deviations. These regional anomaly scores were qualitatively and quantitatively compared, per GOLD class, to PRM volumes (emphysema: PRMEmph, functional small-airway disease: PRMfSAD) and to a Principal Component Analysis (PCA) and Clustering, applied on the self-supervised latent space. Its relationships to pulmonary function tests (PFTs) were also evaluated.Initial t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization of the self-supervised latent space highlighted distinct spatial patterns, revealing clear separations between regions with and without emphysema and air trapping. Four stable clusters were identified among this latent space by the PCA and Cluster Analysis. As the GOLD stage increased, PRMEmph, PRMfSAD, anomaly score, and Cluster 3 volumes exhibited escalating trends, contrasting with a decline in Cluster 2. The patient-wise anomaly scores significantly differed across GOLD stages (p < 0.01), except for never-smokers and GOLD 0 patients. In contrast, PRMEmph, PRMfSAD, and cluster classes showed fewer significant differences. Pearson correlation coefficients revealed moderate anomaly score correlations to PFTs (0.41-0.68), except for the functional residual capacity and smoking duration. The anomaly score was correlated with PRMEmph (r = 0.66, p < 0.01) and PRMfSAD (r = 0.61, p < 0.01). Anomaly scores significantly improved fitting of PRM-adjusted multivariate models for predicting clinical parameters (p < 0.001). Bland-Altman plots revealed that volume agreement between PRM-derived volumes and clusters was not constant across the range of measurements.Our study highlights the synergistic utility of the anomaly detection approach and traditional PRM in capturing the nuanced heterogeneity of COPD. The observed disparities in spatial patterns, cluster dynamics, and correlations with PFTs underscore the distinct - yet complementary - strengths of these methods. Integrating anomaly detection and PRM offers a promising avenue for understanding of COPD pathophysiology, potentially informing more tailored diagnostic and intervention approaches to improve patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
毛豆应助好鬼谷采纳,获得10
1秒前
2秒前
Wzx发布了新的文献求助10
2秒前
Ruan完成签到,获得积分20
3秒前
温柔的严青完成签到,获得积分10
4秒前
努力发一区完成签到 ,获得积分10
5秒前
5秒前
柠檬很酸发布了新的文献求助10
6秒前
henry完成签到,获得积分10
6秒前
8秒前
李爱国应助斯文的傲珊采纳,获得10
8秒前
小可爱完成签到,获得积分10
9秒前
聪明的咖啡豆完成签到,获得积分10
9秒前
欢喜的飞珍完成签到,获得积分10
9秒前
9秒前
荼蘼完成签到,获得积分10
10秒前
无花果应助yanziwu94采纳,获得10
10秒前
11秒前
11秒前
柚子完成签到,获得积分10
12秒前
瓦达西完成签到,获得积分10
12秒前
Lucas应助游泳的烤鸭采纳,获得10
13秒前
13秒前
做梦完成签到,获得积分10
13秒前
13秒前
bjc发布了新的文献求助10
14秒前
核桃花生奶兔完成签到 ,获得积分10
14秒前
16秒前
16秒前
夜紫依寒完成签到 ,获得积分10
16秒前
17秒前
17秒前
星河完成签到,获得积分10
17秒前
Ruan发布了新的文献求助10
18秒前
gao456789发布了新的文献求助10
18秒前
英姑应助学术白菜采纳,获得10
19秒前
20秒前
20秒前
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304724
求助须知:如何正确求助?哪些是违规求助? 2938716
关于积分的说明 8489688
捐赠科研通 2613208
什么是DOI,文献DOI怎么找? 1427182
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647547