A patch distribution-based active learning method for multiple instance Alzheimer's disease diagnosis

判别式 主动学习(机器学习) 人工智能 计算机科学 采样(信号处理) 注释 样品(材料) 模式识别(心理学) 机器学习 数据挖掘 计算机视觉 化学 滤波器(信号处理) 色谱法
作者
Tianxiang Wang,Qun Dai
出处
期刊:Pattern Recognition [Elsevier]
卷期号:150: 110341-110341 被引量:2
标识
DOI:10.1016/j.patcog.2024.110341
摘要

Medical data, particularly the complex brain imaging structures, acquisition presents significant difficulties and high diagnostic expenses, resulting in a scarcity of the trainable samples in the real-world scenarios. To overcome this limitation, we present an active learning-based sampling strategy that selects the most informative samples from the unlabeled candidate sample pool for expert annotation, leading to high classification performance with a reduced number of training samples. This study adopts a patch-level perspective and introduces a multi-instance learning framework for Alzheimer's Disease diagnosis. Initially, a patch pre-selection module is designed to identify pathology-prone regions while excluding background areas and irrelevant information. Subsequently, an inner-patch local attention mechanism block and an outer-patch global attention mechanism block are developed to enhance the extraction of discriminative local and global information by the network model. Finally, an active learning sampling strategy is devised to minimize the costs associated with data acquisition and expert annotation in medical domain. The effectiveness of the proposed network framework and active learning strategy was validated through four sets of control experiments on the ADNI dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
田様应助温婉的篮球采纳,获得10
1秒前
月光入梦发布了新的文献求助10
2秒前
科研通AI6应助cc采纳,获得30
3秒前
追寻师完成签到 ,获得积分10
3秒前
Hushluo完成签到,获得积分10
3秒前
Akim应助包容代芹采纳,获得10
4秒前
5秒前
wang发布了新的文献求助10
5秒前
科研通AI6应助oxear采纳,获得10
5秒前
花海发布了新的文献求助10
6秒前
饼干完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
勤奋雨完成签到,获得积分10
8秒前
乐观的凌兰完成签到 ,获得积分10
8秒前
专注的问寒应助cherrychou采纳,获得30
9秒前
10秒前
无昵称完成签到 ,获得积分10
10秒前
饼干发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
花开花落花无悔完成签到 ,获得积分10
12秒前
大模型应助Rdeohio采纳,获得10
12秒前
一只萌新完成签到,获得积分10
13秒前
14秒前
WangYZ发布了新的文献求助10
14秒前
14秒前
华仔应助老李采纳,获得10
14秒前
15秒前
xiaoliu发布了新的文献求助10
16秒前
16秒前
16秒前
天天快乐应助red采纳,获得10
16秒前
17秒前
WMT完成签到 ,获得积分10
18秒前
山有扶苏完成签到,获得积分10
20秒前
fyy完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858