Spectroscopic food adulteration detection using machine learning: Current challenges and future prospects

电流(流体) 数据科学 计算机科学 工程类 电气工程
作者
Rishabh Goyal,Poonam Singha,Sushil Kumar Singh
出处
期刊:Trends in Food Science and Technology [Elsevier BV]
卷期号:146: 104377-104377 被引量:45
标识
DOI:10.1016/j.tifs.2024.104377
摘要

Food adulteration has emerged as a significant challenge in the food industry, impacting consumer health and trust in the market. Utilizing machine learning especially deep learning with spectroscopic methods has revolutionized food adulteration detection enabling the development of more sophisticated and automated solutions. This review aims to provide a comprehensive overview of the challenges and opportunities in machine learning-based spectroscopic techniques for detecting food adulteration by exploring various spectroscopic techniques commonly employed in the food industry, such as infrared spectroscopy, Raman spectroscopy, NMR spectroscopy, fluorescence spectroscopy, multi-spectral imaging, and hyperspectral imaging. The article addresses data pre-processing, feature engineering, model complexity, interpretability and their performance, and the need for large-scale diverse datasets. To develop a commercial spectroscopic adulteration detection system that uses machine learning, one needs to optimize not only the model, but also the dataset size, the combination of pre-processing methods, the feature selection and extraction methods, the model selection, the hyperparameters by validation and the performance criteria. In addition, new machine learning algorithms are growing rapidly but creating a specialized model for adulteration detection using spectroscopy is still an area of research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助黑冰A采纳,获得10
刚刚
SYLH应助winjay采纳,获得10
1秒前
1秒前
Shabby0-0完成签到,获得积分10
2秒前
2秒前
完美世界应助budingman采纳,获得30
4秒前
揽月完成签到,获得积分10
4秒前
bji完成签到,获得积分10
4秒前
4秒前
赘婿应助满意的盼夏采纳,获得10
5秒前
5秒前
小冯爱睡觉完成签到,获得积分20
6秒前
7秒前
揽月发布了新的文献求助10
7秒前
WN发布了新的文献求助10
7秒前
8秒前
liangyiteng发布了新的文献求助10
8秒前
9秒前
明理问柳完成签到,获得积分10
10秒前
丘比特应助等待的谷波采纳,获得10
10秒前
12秒前
zhengqisong发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
深情安青应助夏墨采纳,获得30
16秒前
小白杨完成签到,获得积分10
18秒前
endlesszhang发布了新的文献求助30
18秒前
夔kk发布了新的文献求助10
19秒前
CHAIZH发布了新的文献求助10
19秒前
19秒前
liangyiteng完成签到,获得积分10
20秒前
20秒前
Lizzy完成签到,获得积分10
20秒前
sunzhuxi发布了新的文献求助10
24秒前
Qiancheni完成签到,获得积分10
25秒前
25秒前
28秒前
CQ完成签到,获得积分10
29秒前
行路人完成签到,获得积分10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967386
求助须知:如何正确求助?哪些是违规求助? 3512667
关于积分的说明 11164479
捐赠科研通 3247536
什么是DOI,文献DOI怎么找? 1793911
邀请新用户注册赠送积分活动 874758
科研通“疑难数据库(出版商)”最低求助积分说明 804498