Few-Shot Fine-Grained Classification of Histological Images

弹丸 计算机科学 人工智能 上下文图像分类 模式识别(心理学) 计算机视觉 材料科学 图像(数学) 冶金
作者
Yingdong Jiang,Jin Huang,Zexi Jin,Leqi Shen,Ziyi Zhang
标识
DOI:10.1109/medai59581.2023.00056
摘要

Histological image classification plays a crucial role in cancer diagnosis. However, the acquisition of well-labeled histological images is prohibitively expensive, and obtaining rare abnormal samples is challenging. Therefore, applying few-shot learning methods to histological image classification tasks holds significant clinical value. Nevertheless, existing research predom-inantly relies on coarse-grained image classification approaches based on natural image datasets, which struggle to address the fine-grained challenges encountered in histological image classification, such as intra-class diversity and inter-class similarity. To tackle this issue, this study proposes a novel few-shot fine-grained classification method for histological images, named “Category-Aware Feature Map Reconstruction Network.” This method employs channel weights to localize the differences between inter-class and intra-class regions, composed of intra-class channel weights and inter-class channel weights, collectively referred to as category-aware weights. Specifically, intra-class channel weights indicate the matching degree of salient regions within the support set of a particular class, while inter-class channel weights represent the degree of containing distinct information between classes. The category-aware weights are utilized to transform the support feature maps and query feature maps, generating feature maps that capture differentiating details between categories. Finally, the distance between the transformed query feature map and support feature map is calculated to achieve probabilistic predictions for the categories. On a histological few-shot dataset, this method achieves an accuracy of 90.23% using ResNet-12 as the feature extractor, surpassing the baseline model by 5.24% and outperforming other few-shot methods by at least 10% in the 5-way 10-shot experimental setting. The proposed method exhibits exceptional performance on histological image few-shot datasets, playing a vital role in more accurate and pathologist-independent cancer diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助TearMarks采纳,获得10
刚刚
silin完成签到,获得积分10
刚刚
小豆包完成签到,获得积分20
1秒前
xttju2014发布了新的文献求助10
1秒前
1秒前
super完成签到,获得积分20
2秒前
2秒前
Ak完成签到,获得积分0
2秒前
田小班发布了新的文献求助10
3秒前
Irene发布了新的文献求助10
3秒前
认真日记本完成签到 ,获得积分10
3秒前
www发布了新的文献求助10
3秒前
4秒前
桐桐应助哈哈哈哈哈哈采纳,获得10
4秒前
李小莉0419发布了新的文献求助10
4秒前
Ava应助MC采纳,获得10
5秒前
baobaot发布了新的文献求助30
5秒前
5秒前
承乐应助小豆包采纳,获得10
5秒前
英姑应助小豆包采纳,获得10
5秒前
秋寒完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
斯文败类应助mikiisme采纳,获得10
7秒前
algain完成签到,获得积分10
7秒前
Wizzzzzzzy发布了新的文献求助10
7秒前
necos发布了新的文献求助10
10秒前
10秒前
11秒前
fmx完成签到,获得积分10
11秒前
残剑月发布了新的文献求助10
12秒前
12秒前
weihongjuan发布了新的文献求助10
12秒前
帅气的馒头应助酷炫初雪采纳,获得10
12秒前
janette完成签到,获得积分10
13秒前
爆米花应助乌衣白马采纳,获得10
13秒前
13秒前
财神爷心尖尖的宝儿完成签到,获得积分10
14秒前
zyc发布了新的文献求助10
14秒前
nn完成签到,获得积分20
14秒前
阿屁屁猪完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836