Few-Shot Fine-Grained Classification of Histological Images

弹丸 计算机科学 人工智能 上下文图像分类 模式识别(心理学) 计算机视觉 材料科学 图像(数学) 冶金
作者
Yingdong Jiang,Jin Huang,Zexi Jin,Leqi Shen,Ziyi Zhang
标识
DOI:10.1109/medai59581.2023.00056
摘要

Histological image classification plays a crucial role in cancer diagnosis. However, the acquisition of well-labeled histological images is prohibitively expensive, and obtaining rare abnormal samples is challenging. Therefore, applying few-shot learning methods to histological image classification tasks holds significant clinical value. Nevertheless, existing research predom-inantly relies on coarse-grained image classification approaches based on natural image datasets, which struggle to address the fine-grained challenges encountered in histological image classification, such as intra-class diversity and inter-class similarity. To tackle this issue, this study proposes a novel few-shot fine-grained classification method for histological images, named “Category-Aware Feature Map Reconstruction Network.” This method employs channel weights to localize the differences between inter-class and intra-class regions, composed of intra-class channel weights and inter-class channel weights, collectively referred to as category-aware weights. Specifically, intra-class channel weights indicate the matching degree of salient regions within the support set of a particular class, while inter-class channel weights represent the degree of containing distinct information between classes. The category-aware weights are utilized to transform the support feature maps and query feature maps, generating feature maps that capture differentiating details between categories. Finally, the distance between the transformed query feature map and support feature map is calculated to achieve probabilistic predictions for the categories. On a histological few-shot dataset, this method achieves an accuracy of 90.23% using ResNet-12 as the feature extractor, surpassing the baseline model by 5.24% and outperforming other few-shot methods by at least 10% in the 5-way 10-shot experimental setting. The proposed method exhibits exceptional performance on histological image few-shot datasets, playing a vital role in more accurate and pathologist-independent cancer diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助phil采纳,获得10
刚刚
小徐801完成签到,获得积分10
1秒前
YZMVP发布了新的文献求助10
1秒前
1秒前
yiren完成签到,获得积分10
2秒前
3秒前
三水完成签到,获得积分10
3秒前
nora发布了新的文献求助10
3秒前
5秒前
xiadu发布了新的文献求助10
6秒前
Lsy完成签到,获得积分10
6秒前
6秒前
6秒前
9秒前
马子妍发布了新的文献求助10
9秒前
隐形曼青应助粥mi采纳,获得10
10秒前
天天完成签到 ,获得积分10
11秒前
XIEQ完成签到,获得积分10
12秒前
酷波er应助Yuchaoo采纳,获得10
12秒前
微微发布了新的文献求助20
12秒前
老衲发布了新的文献求助10
12秒前
phil发布了新的文献求助10
12秒前
七七完成签到,获得积分10
13秒前
体贴怜翠发布了新的文献求助10
13秒前
小白应助XIEQ采纳,获得10
15秒前
16秒前
19秒前
woobinhua完成签到,获得积分10
19秒前
今后应助brianzk1989采纳,获得10
19秒前
vv发布了新的文献求助10
20秒前
21秒前
21秒前
23秒前
沙砾完成签到,获得积分10
23秒前
MA发布了新的文献求助10
24秒前
24秒前
孤独绮梅完成签到 ,获得积分10
25秒前
26秒前
小白应助XIEQ采纳,获得10
26秒前
猪猪hero应助含辰惜采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605657
求助须知:如何正确求助?哪些是违规求助? 4690241
关于积分的说明 14862785
捐赠科研通 4702214
什么是DOI,文献DOI怎么找? 2542212
邀请新用户注册赠送积分活动 1507831
关于科研通互助平台的介绍 1472132