清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Few-Shot Fine-Grained Classification of Histological Images

弹丸 计算机科学 人工智能 上下文图像分类 模式识别(心理学) 计算机视觉 材料科学 图像(数学) 冶金
作者
Yingdong Jiang,Jin Huang,Zexi Jin,Leqi Shen,Ziyi Zhang
标识
DOI:10.1109/medai59581.2023.00056
摘要

Histological image classification plays a crucial role in cancer diagnosis. However, the acquisition of well-labeled histological images is prohibitively expensive, and obtaining rare abnormal samples is challenging. Therefore, applying few-shot learning methods to histological image classification tasks holds significant clinical value. Nevertheless, existing research predom-inantly relies on coarse-grained image classification approaches based on natural image datasets, which struggle to address the fine-grained challenges encountered in histological image classification, such as intra-class diversity and inter-class similarity. To tackle this issue, this study proposes a novel few-shot fine-grained classification method for histological images, named “Category-Aware Feature Map Reconstruction Network.” This method employs channel weights to localize the differences between inter-class and intra-class regions, composed of intra-class channel weights and inter-class channel weights, collectively referred to as category-aware weights. Specifically, intra-class channel weights indicate the matching degree of salient regions within the support set of a particular class, while inter-class channel weights represent the degree of containing distinct information between classes. The category-aware weights are utilized to transform the support feature maps and query feature maps, generating feature maps that capture differentiating details between categories. Finally, the distance between the transformed query feature map and support feature map is calculated to achieve probabilistic predictions for the categories. On a histological few-shot dataset, this method achieves an accuracy of 90.23% using ResNet-12 as the feature extractor, surpassing the baseline model by 5.24% and outperforming other few-shot methods by at least 10% in the 5-way 10-shot experimental setting. The proposed method exhibits exceptional performance on histological image few-shot datasets, playing a vital role in more accurate and pathologist-independent cancer diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
汤谷栽扶桑给汤谷栽扶桑的求助进行了留言
1分钟前
2分钟前
guanruo发布了新的文献求助10
2分钟前
小脚丫完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
guanruo完成签到,获得积分10
3分钟前
今后应助xun采纳,获得10
3分钟前
3分钟前
小七仔完成签到 ,获得积分10
4分钟前
胜天半子完成签到 ,获得积分10
4分钟前
汤谷栽扶桑完成签到,获得积分10
5分钟前
5分钟前
草木完成签到,获得积分10
5分钟前
xun发布了新的文献求助10
5分钟前
xun关闭了xun文献求助
5分钟前
小二郎应助木禾火采纳,获得10
6分钟前
未完成完成签到,获得积分10
6分钟前
1437594843完成签到 ,获得积分10
6分钟前
6分钟前
木禾火发布了新的文献求助10
6分钟前
木禾火完成签到,获得积分20
7分钟前
7分钟前
7分钟前
yu完成签到,获得积分10
7分钟前
yu发布了新的文献求助30
7分钟前
8分钟前
huluobo发布了新的文献求助10
8分钟前
tjyiia完成签到,获得积分10
8分钟前
Leon应助非泥采纳,获得10
9分钟前
留胡子的世平完成签到,获得积分10
10分钟前
xun发布了新的文献求助10
10分钟前
小蘑菇应助xun采纳,获得10
10分钟前
zcq0726完成签到,获得积分10
11分钟前
研友_nxw2xL完成签到,获得积分10
11分钟前
11分钟前
muriel完成签到,获得积分10
11分钟前
11分钟前
Yvan发布了新的文献求助30
12分钟前
高分求助中
Востребованный временем 2500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Principles of Ultraviolet Photoelectron Spectroscopy 500
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3431166
求助须知:如何正确求助?哪些是违规求助? 3029458
关于积分的说明 8933016
捐赠科研通 2717181
什么是DOI,文献DOI怎么找? 1490520
科研通“疑难数据库(出版商)”最低求助积分说明 688884
邀请新用户注册赠送积分活动 684822