Few-Shot Fine-Grained Classification of Histological Images

弹丸 计算机科学 人工智能 上下文图像分类 模式识别(心理学) 计算机视觉 材料科学 图像(数学) 冶金
作者
Yingdong Jiang,Jin Huang,Zexi Jin,Leqi Shen,Ziyi Zhang
标识
DOI:10.1109/medai59581.2023.00056
摘要

Histological image classification plays a crucial role in cancer diagnosis. However, the acquisition of well-labeled histological images is prohibitively expensive, and obtaining rare abnormal samples is challenging. Therefore, applying few-shot learning methods to histological image classification tasks holds significant clinical value. Nevertheless, existing research predom-inantly relies on coarse-grained image classification approaches based on natural image datasets, which struggle to address the fine-grained challenges encountered in histological image classification, such as intra-class diversity and inter-class similarity. To tackle this issue, this study proposes a novel few-shot fine-grained classification method for histological images, named “Category-Aware Feature Map Reconstruction Network.” This method employs channel weights to localize the differences between inter-class and intra-class regions, composed of intra-class channel weights and inter-class channel weights, collectively referred to as category-aware weights. Specifically, intra-class channel weights indicate the matching degree of salient regions within the support set of a particular class, while inter-class channel weights represent the degree of containing distinct information between classes. The category-aware weights are utilized to transform the support feature maps and query feature maps, generating feature maps that capture differentiating details between categories. Finally, the distance between the transformed query feature map and support feature map is calculated to achieve probabilistic predictions for the categories. On a histological few-shot dataset, this method achieves an accuracy of 90.23% using ResNet-12 as the feature extractor, surpassing the baseline model by 5.24% and outperforming other few-shot methods by at least 10% in the 5-way 10-shot experimental setting. The proposed method exhibits exceptional performance on histological image few-shot datasets, playing a vital role in more accurate and pathologist-independent cancer diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
基拉发布了新的文献求助10
刚刚
沉默的婴发布了新的文献求助10
刚刚
123发布了新的文献求助10
刚刚
科目三应助健壮羊青采纳,获得10
刚刚
脸小呆呆发布了新的文献求助10
1秒前
1秒前
哈哈哈哈发布了新的文献求助10
2秒前
只吃7分饱发布了新的文献求助10
2秒前
2秒前
共享精神应助紫菀采纳,获得10
2秒前
2秒前
搜集达人应助yuan采纳,获得10
2秒前
3秒前
kxuehen完成签到,获得积分10
3秒前
华仔应助nekobeing采纳,获得10
4秒前
飘逸雁荷完成签到,获得积分20
4秒前
量子星尘发布了新的文献求助10
5秒前
悦耳向秋完成签到,获得积分10
5秒前
SciGPT应助爆螺钉采纳,获得10
6秒前
6秒前
FashionBoy应助haha采纳,获得10
7秒前
7秒前
7秒前
CR完成签到 ,获得积分10
7秒前
7秒前
Return发布了新的文献求助10
8秒前
奥奥没有利饼干完成签到 ,获得积分10
9秒前
9秒前
Legend发布了新的文献求助10
10秒前
10秒前
11秒前
小陈要发SCI完成签到 ,获得积分10
11秒前
12秒前
基拉完成签到,获得积分10
12秒前
能干耳机发布了新的文献求助10
12秒前
niNe3YUE应助小启采纳,获得10
12秒前
刘帅完成签到,获得积分10
13秒前
13秒前
张张张张张张张完成签到,获得积分10
14秒前
star发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625765
求助须知:如何正确求助?哪些是违规求助? 4711573
关于积分的说明 14956125
捐赠科研通 4779676
什么是DOI,文献DOI怎么找? 2553867
邀请新用户注册赠送积分活动 1515779
关于科研通互助平台的介绍 1475959