亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Few-Shot Fine-Grained Classification of Histological Images

弹丸 计算机科学 人工智能 上下文图像分类 模式识别(心理学) 计算机视觉 材料科学 图像(数学) 冶金
作者
Yingdong Jiang,Jin Huang,Zexi Jin,Leqi Shen,Ziyi Zhang
标识
DOI:10.1109/medai59581.2023.00056
摘要

Histological image classification plays a crucial role in cancer diagnosis. However, the acquisition of well-labeled histological images is prohibitively expensive, and obtaining rare abnormal samples is challenging. Therefore, applying few-shot learning methods to histological image classification tasks holds significant clinical value. Nevertheless, existing research predom-inantly relies on coarse-grained image classification approaches based on natural image datasets, which struggle to address the fine-grained challenges encountered in histological image classification, such as intra-class diversity and inter-class similarity. To tackle this issue, this study proposes a novel few-shot fine-grained classification method for histological images, named “Category-Aware Feature Map Reconstruction Network.” This method employs channel weights to localize the differences between inter-class and intra-class regions, composed of intra-class channel weights and inter-class channel weights, collectively referred to as category-aware weights. Specifically, intra-class channel weights indicate the matching degree of salient regions within the support set of a particular class, while inter-class channel weights represent the degree of containing distinct information between classes. The category-aware weights are utilized to transform the support feature maps and query feature maps, generating feature maps that capture differentiating details between categories. Finally, the distance between the transformed query feature map and support feature map is calculated to achieve probabilistic predictions for the categories. On a histological few-shot dataset, this method achieves an accuracy of 90.23% using ResNet-12 as the feature extractor, surpassing the baseline model by 5.24% and outperforming other few-shot methods by at least 10% in the 5-way 10-shot experimental setting. The proposed method exhibits exceptional performance on histological image few-shot datasets, playing a vital role in more accurate and pathologist-independent cancer diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵毛豆完成签到 ,获得积分10
2秒前
尘远知山静完成签到 ,获得积分10
3秒前
power完成签到,获得积分10
9秒前
19秒前
31秒前
清风明月完成签到 ,获得积分10
35秒前
haprier完成签到 ,获得积分10
51秒前
感性的梦露完成签到,获得积分10
1分钟前
研友_VZG7GZ应助达不溜搽采纳,获得10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得30
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
atao关注了科研通微信公众号
1分钟前
深情安青应助atao采纳,获得10
1分钟前
陈陈完成签到,获得积分10
1分钟前
香蕉觅云应助材料生采纳,获得10
1分钟前
1分钟前
边雨完成签到 ,获得积分10
1分钟前
科目三应助Yuanyuan采纳,获得10
1分钟前
1分钟前
1分钟前
标致金毛发布了新的文献求助50
1分钟前
材料生发布了新的文献求助10
1分钟前
1分钟前
朴素寄文发布了新的文献求助10
1分钟前
1分钟前
1分钟前
星燃发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
宝宝熊的熊宝宝完成签到,获得积分10
2分钟前
2分钟前
扣子发布了新的文献求助30
2分钟前
Catching发布了新的文献求助10
2分钟前
atao发布了新的文献求助10
2分钟前
Criminology34应助标致金毛采纳,获得10
2分钟前
粽子完成签到,获得积分10
2分钟前
无花果应助Catching采纳,获得10
2分钟前
atao完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568155
求助须知:如何正确求助?哪些是违规求助? 4652598
关于积分的说明 14701843
捐赠科研通 4594471
什么是DOI,文献DOI怎么找? 2520964
邀请新用户注册赠送积分活动 1492847
关于科研通互助平台的介绍 1463696