Few-Shot Fine-Grained Classification of Histological Images

弹丸 计算机科学 人工智能 上下文图像分类 模式识别(心理学) 计算机视觉 材料科学 图像(数学) 冶金
作者
Yingdong Jiang,Jin Huang,Zexi Jin,Leqi Shen,Ziyi Zhang
标识
DOI:10.1109/medai59581.2023.00056
摘要

Histological image classification plays a crucial role in cancer diagnosis. However, the acquisition of well-labeled histological images is prohibitively expensive, and obtaining rare abnormal samples is challenging. Therefore, applying few-shot learning methods to histological image classification tasks holds significant clinical value. Nevertheless, existing research predom-inantly relies on coarse-grained image classification approaches based on natural image datasets, which struggle to address the fine-grained challenges encountered in histological image classification, such as intra-class diversity and inter-class similarity. To tackle this issue, this study proposes a novel few-shot fine-grained classification method for histological images, named “Category-Aware Feature Map Reconstruction Network.” This method employs channel weights to localize the differences between inter-class and intra-class regions, composed of intra-class channel weights and inter-class channel weights, collectively referred to as category-aware weights. Specifically, intra-class channel weights indicate the matching degree of salient regions within the support set of a particular class, while inter-class channel weights represent the degree of containing distinct information between classes. The category-aware weights are utilized to transform the support feature maps and query feature maps, generating feature maps that capture differentiating details between categories. Finally, the distance between the transformed query feature map and support feature map is calculated to achieve probabilistic predictions for the categories. On a histological few-shot dataset, this method achieves an accuracy of 90.23% using ResNet-12 as the feature extractor, surpassing the baseline model by 5.24% and outperforming other few-shot methods by at least 10% in the 5-way 10-shot experimental setting. The proposed method exhibits exceptional performance on histological image few-shot datasets, playing a vital role in more accurate and pathologist-independent cancer diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
董耀文完成签到,获得积分10
刚刚
pliciyir完成签到 ,获得积分10
1秒前
出厂价完成签到,获得积分10
1秒前
Shaohan完成签到,获得积分10
3秒前
王继完成签到,获得积分10
3秒前
合适鲂完成签到,获得积分10
7秒前
卡卡西完成签到,获得积分10
7秒前
Yi完成签到,获得积分10
7秒前
背后如之完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
simon666完成签到,获得积分10
10秒前
maybe完成签到,获得积分10
10秒前
卡片完成签到,获得积分10
10秒前
MaxwellZH完成签到,获得积分10
11秒前
愤怒的水绿完成签到,获得积分10
14秒前
hahaha6789y完成签到,获得积分10
14秒前
junzzz完成签到 ,获得积分10
14秒前
霡霂完成签到,获得积分10
14秒前
BlueKitty完成签到,获得积分10
15秒前
Walton完成签到,获得积分10
16秒前
cl完成签到,获得积分10
16秒前
sheep完成签到,获得积分10
16秒前
Bake完成签到 ,获得积分10
16秒前
surlamper完成签到,获得积分10
17秒前
Mo完成签到,获得积分10
17秒前
hahaha2完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
婉枫完成签到,获得积分10
18秒前
徐彬荣完成签到,获得积分10
18秒前
往昔不过微澜完成签到,获得积分10
18秒前
spider534完成签到,获得积分10
19秒前
好好应助科研通管家采纳,获得10
19秒前
好好应助科研通管家采纳,获得10
19秒前
好好应助科研通管家采纳,获得10
19秒前
好好应助科研通管家采纳,获得10
19秒前
19秒前
好好应助科研通管家采纳,获得10
19秒前
19秒前
TGU的小马同学完成签到 ,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664739
求助须知:如何正确求助?哪些是违规求助? 4868979
关于积分的说明 15108502
捐赠科研通 4823434
什么是DOI,文献DOI怎么找? 2582356
邀请新用户注册赠送积分活动 1536359
关于科研通互助平台的介绍 1494797