亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Few-Shot Fine-Grained Classification of Histological Images

弹丸 计算机科学 人工智能 上下文图像分类 模式识别(心理学) 计算机视觉 材料科学 图像(数学) 冶金
作者
Yingdong Jiang,Jin Huang,Zexi Jin,Leqi Shen,Ziyi Zhang
标识
DOI:10.1109/medai59581.2023.00056
摘要

Histological image classification plays a crucial role in cancer diagnosis. However, the acquisition of well-labeled histological images is prohibitively expensive, and obtaining rare abnormal samples is challenging. Therefore, applying few-shot learning methods to histological image classification tasks holds significant clinical value. Nevertheless, existing research predom-inantly relies on coarse-grained image classification approaches based on natural image datasets, which struggle to address the fine-grained challenges encountered in histological image classification, such as intra-class diversity and inter-class similarity. To tackle this issue, this study proposes a novel few-shot fine-grained classification method for histological images, named “Category-Aware Feature Map Reconstruction Network.” This method employs channel weights to localize the differences between inter-class and intra-class regions, composed of intra-class channel weights and inter-class channel weights, collectively referred to as category-aware weights. Specifically, intra-class channel weights indicate the matching degree of salient regions within the support set of a particular class, while inter-class channel weights represent the degree of containing distinct information between classes. The category-aware weights are utilized to transform the support feature maps and query feature maps, generating feature maps that capture differentiating details between categories. Finally, the distance between the transformed query feature map and support feature map is calculated to achieve probabilistic predictions for the categories. On a histological few-shot dataset, this method achieves an accuracy of 90.23% using ResNet-12 as the feature extractor, surpassing the baseline model by 5.24% and outperforming other few-shot methods by at least 10% in the 5-way 10-shot experimental setting. The proposed method exhibits exceptional performance on histological image few-shot datasets, playing a vital role in more accurate and pathologist-independent cancer diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何安寒发布了新的文献求助30
1秒前
耶椰耶完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
20秒前
西宁发布了新的文献求助10
34秒前
汉堡包应助lin采纳,获得10
36秒前
46秒前
lin发布了新的文献求助10
52秒前
王雪晗完成签到 ,获得积分10
1分钟前
何安寒完成签到,获得积分10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
1分钟前
何安寒发布了新的文献求助10
1分钟前
王二柱今天毕业了吗完成签到,获得积分10
1分钟前
1分钟前
Qing发布了新的文献求助10
1分钟前
1分钟前
2分钟前
AaronW完成签到 ,获得积分10
2分钟前
dbyy发布了新的文献求助10
2分钟前
大熊完成签到 ,获得积分10
2分钟前
2分钟前
FashionBoy应助曦耀采纳,获得10
2分钟前
超帅的龙猫完成签到,获得积分10
2分钟前
qq完成签到,获得积分10
2分钟前
李健应助曦耀采纳,获得10
3分钟前
qq发布了新的文献求助10
3分钟前
务实的犀牛完成签到,获得积分10
3分钟前
null应助科研通管家采纳,获得10
3分钟前
null应助科研通管家采纳,获得10
3分钟前
null应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628200
求助须知:如何正确求助?哪些是违规求助? 4716020
关于积分的说明 14963827
捐赠科研通 4785884
什么是DOI,文献DOI怎么找? 2555439
邀请新用户注册赠送积分活动 1516729
关于科研通互助平台的介绍 1477281