Few-Shot Fine-Grained Classification of Histological Images

弹丸 计算机科学 人工智能 上下文图像分类 模式识别(心理学) 计算机视觉 材料科学 图像(数学) 冶金
作者
Yingdong Jiang,Jin Huang,Zexi Jin,Leqi Shen,Ziyi Zhang
标识
DOI:10.1109/medai59581.2023.00056
摘要

Histological image classification plays a crucial role in cancer diagnosis. However, the acquisition of well-labeled histological images is prohibitively expensive, and obtaining rare abnormal samples is challenging. Therefore, applying few-shot learning methods to histological image classification tasks holds significant clinical value. Nevertheless, existing research predom-inantly relies on coarse-grained image classification approaches based on natural image datasets, which struggle to address the fine-grained challenges encountered in histological image classification, such as intra-class diversity and inter-class similarity. To tackle this issue, this study proposes a novel few-shot fine-grained classification method for histological images, named “Category-Aware Feature Map Reconstruction Network.” This method employs channel weights to localize the differences between inter-class and intra-class regions, composed of intra-class channel weights and inter-class channel weights, collectively referred to as category-aware weights. Specifically, intra-class channel weights indicate the matching degree of salient regions within the support set of a particular class, while inter-class channel weights represent the degree of containing distinct information between classes. The category-aware weights are utilized to transform the support feature maps and query feature maps, generating feature maps that capture differentiating details between categories. Finally, the distance between the transformed query feature map and support feature map is calculated to achieve probabilistic predictions for the categories. On a histological few-shot dataset, this method achieves an accuracy of 90.23% using ResNet-12 as the feature extractor, surpassing the baseline model by 5.24% and outperforming other few-shot methods by at least 10% in the 5-way 10-shot experimental setting. The proposed method exhibits exceptional performance on histological image few-shot datasets, playing a vital role in more accurate and pathologist-independent cancer diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蝃蝀发布了新的文献求助10
1秒前
AURORA丶完成签到 ,获得积分10
1秒前
sln完成签到,获得积分10
2秒前
haly完成签到 ,获得积分10
2秒前
SciGPT应助1101592875采纳,获得10
4秒前
龙2024完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
8秒前
拾个勤天完成签到,获得积分10
8秒前
const完成签到,获得积分10
8秒前
9秒前
Capital完成签到,获得积分10
11秒前
梁平完成签到 ,获得积分10
11秒前
只想顺利毕业的科研狗完成签到,获得积分0
12秒前
云云完成签到,获得积分10
14秒前
蝃蝀完成签到,获得积分10
15秒前
帅过吴彦祖完成签到,获得积分10
20秒前
风趣霆完成签到,获得积分10
21秒前
欢呼妙菱完成签到,获得积分10
22秒前
科研通AI6应助云云采纳,获得10
22秒前
贲孱完成签到,获得积分10
22秒前
Dearjw1655完成签到,获得积分10
23秒前
围城完成签到 ,获得积分10
23秒前
鲲鹏完成签到 ,获得积分10
25秒前
Hzml完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
26秒前
爱沉淀的太阳花完成签到,获得积分10
26秒前
xueshidaheng完成签到,获得积分0
28秒前
无极微光应助白华苍松采纳,获得20
30秒前
kaiqiang完成签到,获得积分0
30秒前
鸡蛋酱完成签到 ,获得积分10
32秒前
溪泉完成签到,获得积分10
35秒前
35秒前
草木发布了新的文献求助10
35秒前
kyt完成签到 ,获得积分10
37秒前
咄咄完成签到 ,获得积分10
39秒前
笑点低的凉面完成签到,获得积分10
41秒前
42秒前
42秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771737
捐赠科研通 4616005
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590