Few-Shot Fine-Grained Classification of Histological Images

弹丸 计算机科学 人工智能 上下文图像分类 模式识别(心理学) 计算机视觉 材料科学 图像(数学) 冶金
作者
Yingdong Jiang,Jin Huang,Zexi Jin,Leqi Shen,Ziyi Zhang
标识
DOI:10.1109/medai59581.2023.00056
摘要

Histological image classification plays a crucial role in cancer diagnosis. However, the acquisition of well-labeled histological images is prohibitively expensive, and obtaining rare abnormal samples is challenging. Therefore, applying few-shot learning methods to histological image classification tasks holds significant clinical value. Nevertheless, existing research predom-inantly relies on coarse-grained image classification approaches based on natural image datasets, which struggle to address the fine-grained challenges encountered in histological image classification, such as intra-class diversity and inter-class similarity. To tackle this issue, this study proposes a novel few-shot fine-grained classification method for histological images, named “Category-Aware Feature Map Reconstruction Network.” This method employs channel weights to localize the differences between inter-class and intra-class regions, composed of intra-class channel weights and inter-class channel weights, collectively referred to as category-aware weights. Specifically, intra-class channel weights indicate the matching degree of salient regions within the support set of a particular class, while inter-class channel weights represent the degree of containing distinct information between classes. The category-aware weights are utilized to transform the support feature maps and query feature maps, generating feature maps that capture differentiating details between categories. Finally, the distance between the transformed query feature map and support feature map is calculated to achieve probabilistic predictions for the categories. On a histological few-shot dataset, this method achieves an accuracy of 90.23% using ResNet-12 as the feature extractor, surpassing the baseline model by 5.24% and outperforming other few-shot methods by at least 10% in the 5-way 10-shot experimental setting. The proposed method exhibits exceptional performance on histological image few-shot datasets, playing a vital role in more accurate and pathologist-independent cancer diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小雨发布了新的文献求助10
1秒前
爆米花应助Steven采纳,获得10
1秒前
1秒前
newnew完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
ding应助磐xst采纳,获得10
5秒前
原野完成签到,获得积分10
5秒前
科研通AI6应助Nancy采纳,获得10
5秒前
5秒前
huilin发布了新的文献求助10
5秒前
6秒前
niNe3YUE应助薄荷采纳,获得10
6秒前
6秒前
何木萧完成签到,获得积分10
6秒前
丫丫完成签到,获得积分10
8秒前
Ava应助缥缈傥采纳,获得10
8秒前
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
huilin完成签到,获得积分10
11秒前
wenjing发布了新的文献求助10
12秒前
aaa发布了新的文献求助10
12秒前
是个哑巴完成签到,获得积分10
12秒前
Chicophy发布了新的文献求助10
12秒前
13秒前
洪山老狗发布了新的文献求助10
13秒前
14秒前
shengch0234完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
碧蓝之柔完成签到,获得积分10
15秒前
15秒前
伞下铭发布了新的文献求助10
16秒前
tree发布了新的文献求助10
16秒前
毕业完成签到,获得积分10
16秒前
DMPK完成签到,获得积分10
16秒前
仁爱的冰夏完成签到,获得积分10
17秒前
是个哑巴发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002