Few-Shot Fine-Grained Classification of Histological Images

弹丸 计算机科学 人工智能 上下文图像分类 模式识别(心理学) 计算机视觉 材料科学 图像(数学) 冶金
作者
Yingdong Jiang,Jin Huang,Zexi Jin,Leqi Shen,Ziyi Zhang
标识
DOI:10.1109/medai59581.2023.00056
摘要

Histological image classification plays a crucial role in cancer diagnosis. However, the acquisition of well-labeled histological images is prohibitively expensive, and obtaining rare abnormal samples is challenging. Therefore, applying few-shot learning methods to histological image classification tasks holds significant clinical value. Nevertheless, existing research predom-inantly relies on coarse-grained image classification approaches based on natural image datasets, which struggle to address the fine-grained challenges encountered in histological image classification, such as intra-class diversity and inter-class similarity. To tackle this issue, this study proposes a novel few-shot fine-grained classification method for histological images, named “Category-Aware Feature Map Reconstruction Network.” This method employs channel weights to localize the differences between inter-class and intra-class regions, composed of intra-class channel weights and inter-class channel weights, collectively referred to as category-aware weights. Specifically, intra-class channel weights indicate the matching degree of salient regions within the support set of a particular class, while inter-class channel weights represent the degree of containing distinct information between classes. The category-aware weights are utilized to transform the support feature maps and query feature maps, generating feature maps that capture differentiating details between categories. Finally, the distance between the transformed query feature map and support feature map is calculated to achieve probabilistic predictions for the categories. On a histological few-shot dataset, this method achieves an accuracy of 90.23% using ResNet-12 as the feature extractor, surpassing the baseline model by 5.24% and outperforming other few-shot methods by at least 10% in the 5-way 10-shot experimental setting. The proposed method exhibits exceptional performance on histological image few-shot datasets, playing a vital role in more accurate and pathologist-independent cancer diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明月发布了新的文献求助10
刚刚
一个正经人完成签到,获得积分10
刚刚
Zzzzzzjl完成签到,获得积分10
刚刚
向中恶发布了新的文献求助10
刚刚
1秒前
shuang0116发布了新的文献求助10
1秒前
wise111发布了新的文献求助10
1秒前
1秒前
Clover04应助烂漫板栗采纳,获得10
1秒前
13934532358完成签到 ,获得积分10
1秒前
1秒前
陶醉发布了新的文献求助10
1秒前
青树柠檬完成签到 ,获得积分10
1秒前
顾矜应助yuxin采纳,获得10
2秒前
2秒前
Jasper应助代代采纳,获得10
2秒前
深情安青应助Ting采纳,获得10
2秒前
magic发布了新的文献求助10
3秒前
博博完成签到,获得积分10
3秒前
3秒前
spike完成签到,获得积分10
3秒前
3秒前
4秒前
海贼学术发布了新的文献求助10
4秒前
信仰完成签到,获得积分10
4秒前
4秒前
小许同学发布了新的文献求助10
4秒前
嘚嘤丁发布了新的文献求助10
4秒前
weiwei完成签到,获得积分10
5秒前
5秒前
今天进步了吗完成签到,获得积分10
5秒前
apiaji应助Aipoi1采纳,获得20
5秒前
打打应助Aipoi1采纳,获得10
5秒前
李健应助Aipoi1采纳,获得10
5秒前
科目三应助Aipoi1采纳,获得10
5秒前
慕青应助weiyapei采纳,获得10
5秒前
大气幻柏发布了新的文献求助10
6秒前
7秒前
爆米花应助野性的马里奥采纳,获得10
7秒前
同尘完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5270489
求助须知:如何正确求助?哪些是违规求助? 4428597
关于积分的说明 13785284
捐赠科研通 4306524
什么是DOI,文献DOI怎么找? 2363095
邀请新用户注册赠送积分活动 1358819
关于科研通互助平台的介绍 1321696