亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Few-Shot Fine-Grained Classification of Histological Images

弹丸 计算机科学 人工智能 上下文图像分类 模式识别(心理学) 计算机视觉 材料科学 图像(数学) 冶金
作者
Yingdong Jiang,Jin Huang,Zexi Jin,Leqi Shen,Ziyi Zhang
标识
DOI:10.1109/medai59581.2023.00056
摘要

Histological image classification plays a crucial role in cancer diagnosis. However, the acquisition of well-labeled histological images is prohibitively expensive, and obtaining rare abnormal samples is challenging. Therefore, applying few-shot learning methods to histological image classification tasks holds significant clinical value. Nevertheless, existing research predom-inantly relies on coarse-grained image classification approaches based on natural image datasets, which struggle to address the fine-grained challenges encountered in histological image classification, such as intra-class diversity and inter-class similarity. To tackle this issue, this study proposes a novel few-shot fine-grained classification method for histological images, named “Category-Aware Feature Map Reconstruction Network.” This method employs channel weights to localize the differences between inter-class and intra-class regions, composed of intra-class channel weights and inter-class channel weights, collectively referred to as category-aware weights. Specifically, intra-class channel weights indicate the matching degree of salient regions within the support set of a particular class, while inter-class channel weights represent the degree of containing distinct information between classes. The category-aware weights are utilized to transform the support feature maps and query feature maps, generating feature maps that capture differentiating details between categories. Finally, the distance between the transformed query feature map and support feature map is calculated to achieve probabilistic predictions for the categories. On a histological few-shot dataset, this method achieves an accuracy of 90.23% using ResNet-12 as the feature extractor, surpassing the baseline model by 5.24% and outperforming other few-shot methods by at least 10% in the 5-way 10-shot experimental setting. The proposed method exhibits exceptional performance on histological image few-shot datasets, playing a vital role in more accurate and pathologist-independent cancer diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
关琦完成签到,获得积分10
1秒前
KINGAZX完成签到 ,获得积分10
9秒前
在水一方应助cdragon采纳,获得10
15秒前
CDEFGAB完成签到 ,获得积分10
16秒前
16秒前
coco发布了新的文献求助10
20秒前
31秒前
bai完成签到 ,获得积分10
32秒前
科研通AI2S应助弋鱼采纳,获得10
35秒前
123发布了新的文献求助10
36秒前
hob完成签到,获得积分10
39秒前
凡华完成签到,获得积分10
42秒前
46秒前
领导范儿应助hob采纳,获得10
47秒前
咔咔发布了新的文献求助10
50秒前
51秒前
Viiigo完成签到,获得积分10
59秒前
1分钟前
shaylie完成签到 ,获得积分10
1分钟前
肥肉叉烧发布了新的文献求助10
1分钟前
1分钟前
跳跃的滑板完成签到,获得积分10
1分钟前
yexu完成签到,获得积分10
1分钟前
6666发布了新的文献求助10
1分钟前
华仔应助跳跃的滑板采纳,获得10
1分钟前
FashionBoy应助ABC的风格采纳,获得10
1分钟前
肥肉叉烧完成签到,获得积分10
1分钟前
月半完成签到,获得积分10
1分钟前
光亮静槐完成签到 ,获得积分10
1分钟前
1分钟前
ABC的风格发布了新的文献求助10
1分钟前
英姑应助coco采纳,获得10
1分钟前
coco完成签到,获得积分20
1分钟前
pluto应助coco采纳,获得10
1分钟前
xaopng完成签到,获得积分10
1分钟前
1分钟前
cdragon发布了新的文献求助10
1分钟前
完美世界应助梦醒采纳,获得30
2分钟前
李心雨完成签到,获得积分10
2分钟前
杨易完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657929
求助须知:如何正确求助?哪些是违规求助? 4814463
关于积分的说明 15080624
捐赠科研通 4816192
什么是DOI,文献DOI怎么找? 2577186
邀请新用户注册赠送积分活动 1532199
关于科研通互助平台的介绍 1490741