Few-Shot Fine-Grained Classification of Histological Images

弹丸 计算机科学 人工智能 上下文图像分类 模式识别(心理学) 计算机视觉 材料科学 图像(数学) 冶金
作者
Yingdong Jiang,Jin Huang,Zexi Jin,Leqi Shen,Ziyi Zhang
标识
DOI:10.1109/medai59581.2023.00056
摘要

Histological image classification plays a crucial role in cancer diagnosis. However, the acquisition of well-labeled histological images is prohibitively expensive, and obtaining rare abnormal samples is challenging. Therefore, applying few-shot learning methods to histological image classification tasks holds significant clinical value. Nevertheless, existing research predom-inantly relies on coarse-grained image classification approaches based on natural image datasets, which struggle to address the fine-grained challenges encountered in histological image classification, such as intra-class diversity and inter-class similarity. To tackle this issue, this study proposes a novel few-shot fine-grained classification method for histological images, named “Category-Aware Feature Map Reconstruction Network.” This method employs channel weights to localize the differences between inter-class and intra-class regions, composed of intra-class channel weights and inter-class channel weights, collectively referred to as category-aware weights. Specifically, intra-class channel weights indicate the matching degree of salient regions within the support set of a particular class, while inter-class channel weights represent the degree of containing distinct information between classes. The category-aware weights are utilized to transform the support feature maps and query feature maps, generating feature maps that capture differentiating details between categories. Finally, the distance between the transformed query feature map and support feature map is calculated to achieve probabilistic predictions for the categories. On a histological few-shot dataset, this method achieves an accuracy of 90.23% using ResNet-12 as the feature extractor, surpassing the baseline model by 5.24% and outperforming other few-shot methods by at least 10% in the 5-way 10-shot experimental setting. The proposed method exhibits exceptional performance on histological image few-shot datasets, playing a vital role in more accurate and pathologist-independent cancer diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
SCI完成签到,获得积分10
刚刚
lcdamoy发布了新的文献求助10
刚刚
Rabbit完成签到 ,获得积分10
1秒前
1秒前
1秒前
乐乐应助majf采纳,获得50
1秒前
Einson完成签到 ,获得积分10
1秒前
JamesPei应助Ww采纳,获得10
2秒前
年轻半雪完成签到,获得积分10
2秒前
yy完成签到,获得积分10
3秒前
王十贰完成签到,获得积分10
3秒前
精明的问芙完成签到,获得积分10
3秒前
DLY完成签到,获得积分20
3秒前
lijx发布了新的文献求助10
3秒前
3秒前
好好学习完成签到,获得积分10
3秒前
123发布了新的文献求助10
4秒前
5秒前
liang发布了新的文献求助10
5秒前
王香香发布了新的文献求助10
5秒前
安安完成签到,获得积分10
6秒前
雨洋完成签到,获得积分10
7秒前
害羞书易发布了新的文献求助30
7秒前
陈开心完成签到,获得积分10
7秒前
www发布了新的文献求助10
8秒前
evelyn完成签到 ,获得积分10
9秒前
9秒前
Anne完成签到,获得积分10
10秒前
CodeCraft应助夏天采纳,获得10
10秒前
JHL完成签到,获得积分10
10秒前
chenu完成签到 ,获得积分10
10秒前
biofresh完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
Brooks发布了新的文献求助10
12秒前
up_water发布了新的文献求助10
12秒前
XP416完成签到,获得积分10
12秒前
zhl完成签到,获得积分20
12秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960462
求助须知:如何正确求助?哪些是违规求助? 3506587
关于积分的说明 11131436
捐赠科研通 3238853
什么是DOI,文献DOI怎么找? 1789898
邀请新用户注册赠送积分活动 872032
科研通“疑难数据库(出版商)”最低求助积分说明 803118