Few-Shot Fine-Grained Classification of Histological Images

弹丸 计算机科学 人工智能 上下文图像分类 模式识别(心理学) 计算机视觉 材料科学 图像(数学) 冶金
作者
Yingdong Jiang,Jin Huang,Zexi Jin,Leqi Shen,Ziyi Zhang
标识
DOI:10.1109/medai59581.2023.00056
摘要

Histological image classification plays a crucial role in cancer diagnosis. However, the acquisition of well-labeled histological images is prohibitively expensive, and obtaining rare abnormal samples is challenging. Therefore, applying few-shot learning methods to histological image classification tasks holds significant clinical value. Nevertheless, existing research predom-inantly relies on coarse-grained image classification approaches based on natural image datasets, which struggle to address the fine-grained challenges encountered in histological image classification, such as intra-class diversity and inter-class similarity. To tackle this issue, this study proposes a novel few-shot fine-grained classification method for histological images, named “Category-Aware Feature Map Reconstruction Network.” This method employs channel weights to localize the differences between inter-class and intra-class regions, composed of intra-class channel weights and inter-class channel weights, collectively referred to as category-aware weights. Specifically, intra-class channel weights indicate the matching degree of salient regions within the support set of a particular class, while inter-class channel weights represent the degree of containing distinct information between classes. The category-aware weights are utilized to transform the support feature maps and query feature maps, generating feature maps that capture differentiating details between categories. Finally, the distance between the transformed query feature map and support feature map is calculated to achieve probabilistic predictions for the categories. On a histological few-shot dataset, this method achieves an accuracy of 90.23% using ResNet-12 as the feature extractor, surpassing the baseline model by 5.24% and outperforming other few-shot methods by at least 10% in the 5-way 10-shot experimental setting. The proposed method exhibits exceptional performance on histological image few-shot datasets, playing a vital role in more accurate and pathologist-independent cancer diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
李爱国应助xlll采纳,获得10
2秒前
椒盐土豆发布了新的文献求助10
3秒前
3秒前
caster1发布了新的文献求助10
7秒前
今后应助大意的天亦采纳,获得10
7秒前
浮荒完成签到,获得积分20
8秒前
11秒前
黑闷蛋完成签到,获得积分10
11秒前
熠旅完成签到,获得积分10
12秒前
13秒前
马霄鑫完成签到,获得积分10
14秒前
14秒前
14秒前
赘婿应助veblem采纳,获得10
14秒前
优雅的白安完成签到,获得积分10
15秒前
15秒前
17秒前
自觉从筠完成签到 ,获得积分10
17秒前
马霄鑫发布了新的文献求助10
18秒前
wwwjy完成签到 ,获得积分10
18秒前
18秒前
ceeray23发布了新的文献求助20
19秒前
咸鱼发布了新的文献求助10
19秒前
19秒前
Ride发布了新的文献求助10
19秒前
20秒前
20秒前
林林发布了新的文献求助10
21秒前
21秒前
慕青应助Tree_采纳,获得10
22秒前
22秒前
研六六发布了新的文献求助10
23秒前
姜姜完成签到 ,获得积分10
23秒前
科研通AI2S应助Ride采纳,获得10
23秒前
量子星尘发布了新的文献求助10
24秒前
所所应助你还未看此花时采纳,获得10
24秒前
哈哈发布了新的文献求助10
25秒前
25秒前
观澜发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599456
求助须知:如何正确求助?哪些是违规求助? 4685036
关于积分的说明 14837601
捐赠科研通 4668162
什么是DOI,文献DOI怎么找? 2537964
邀请新用户注册赠送积分活动 1505398
关于科研通互助平台的介绍 1470783