Bearing fault diagnosis via fusing small samples and training multi-state Siamese neural networks

培训(气象学) 人工神经网络 计算机科学 人工智能 断层(地质) 模式识别(心理学) 深度学习 方位(导航) 特征提取 机器学习 数据挖掘 地震学 地质学 物理 气象学
作者
Chuanbo Wen,Yipeng Xue,Weibo Liu,Guochu Chen,Xiaohui Liu
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:576: 127355-127355 被引量:18
标识
DOI:10.1016/j.neucom.2024.127355
摘要

Recently, deep learning techniques have been widely applied to fault diagnosis due to their outstanding feature extraction abilities. The success of deep-learning-based fault diagnosis methods is highly dependent on the quantity and quality of the training data. In practical scenarios, it is challenging to obtain sufficient high-quality training data for fault diagnosis tasks due to complex environments, which would affect the effectiveness of the deep learning methods. In this paper, a new fault diagnosis method is proposed for motor bearing fault diagnosis under small samples. The Siamese neural networks (SNNs) are employed to extract the fault features. A multi-stage training strategy is proposed to train the SNNs with the aim to prevent the training stagnation problem and handle the small sample problem. A multi-source feature fusion network is developed to make full use of the multi-source sensor data by fusing the extracted fault features for further fault diagnosis. The proposed method is applied to motor bearing fault diagnosis on two real-world datasets. Experimental results demonstrate the effectiveness and feasibility of the introduced method for motor bearing fault diagnosis under small samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
abc_xin发布了新的文献求助10
刚刚
刚刚
朴实觅波发布了新的文献求助10
1秒前
2秒前
淡淡的香完成签到,获得积分10
2秒前
2秒前
校外狂徒张三完成签到,获得积分10
3秒前
大曼完成签到,获得积分10
5秒前
5秒前
星辰大海应助Cici采纳,获得10
5秒前
小五完成签到 ,获得积分10
5秒前
罗氏集团发布了新的文献求助10
6秒前
打打应助王琨程采纳,获得30
6秒前
852应助kiki采纳,获得10
6秒前
善学以致用应助abc_xin采纳,获得10
8秒前
开朗芸遥完成签到,获得积分10
8秒前
可爱的函函应助hancahngxiao采纳,获得10
8秒前
enterdawn完成签到,获得积分10
8秒前
朴实觅波完成签到,获得积分10
9秒前
明眸发布了新的文献求助10
9秒前
10秒前
ccjjpp1243发布了新的文献求助10
10秒前
10秒前
Youngen完成签到,获得积分10
11秒前
11秒前
12秒前
飓风关注了科研通微信公众号
14秒前
来了发布了新的文献求助20
15秒前
wjw发布了新的文献求助10
15秒前
16秒前
18秒前
河鲸发布了新的文献求助50
20秒前
hancahngxiao发布了新的文献求助10
21秒前
21秒前
spark完成签到,获得积分10
23秒前
今后应助verbal2005采纳,获得10
23秒前
ccjjpp1243完成签到,获得积分10
23秒前
Ava应助淡定的勒采纳,获得10
25秒前
26秒前
Ran发布了新的文献求助10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998144
求助须知:如何正确求助?哪些是违规求助? 3537656
关于积分的说明 11272231
捐赠科研通 3276814
什么是DOI,文献DOI怎么找? 1807126
邀请新用户注册赠送积分活动 883718
科研通“疑难数据库(出版商)”最低求助积分说明 810014