ADCNet: a unified framework for predicting the activity of antibody-drug conjugates

计算机科学 稳健性(进化) 人工智能 试验装置 有效载荷(计算) 机器学习 源代码 集合(抽象数据类型) 代表(政治) 接收机工作特性 实现(概率) 程序设计语言 计算机网络 生物化学 化学 网络数据包 政治 政治学 法学 基因 统计 数学
作者
Liye Chen,Biaoshun Li,Yihao Chen,Mujie Lin,Shipeng Zhang,Chenxin Li,Yu Pang,Ling Wang
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2401.09176
摘要

Antibody-drug conjugate (ADC) has revolutionized the field of cancer treatment in the era of precision medicine due to their ability to precisely target cancer cells and release highly effective drug. Nevertheless, the realization of rational design of ADC is very difficult because the relationship between their structures and activities is difficult to understand. In the present study, we introduce a unified deep learning framework called ADCNet to help design potential ADCs. The ADCNet highly integrates the protein representation learning language model ESM-2 and small-molecule representation learning language model FG-BERT models to achieve activity prediction through learning meaningful features from antigen and antibody protein sequences of ADC, SMILES strings of linker and payload, and drug-antibody ratio (DAR) value. Based on a carefully designed and manually tailored ADC data set, extensive evaluation results reveal that ADCNet performs best on the test set compared to baseline machine learning models across all evaluation metrics. For example, it achieves an average prediction accuracy of 87.12%, a balanced accuracy of 0.8689, and an area under receiver operating characteristic curve of 0.9293 on the test set. In addition, cross-validation, ablation experiments, and external independent testing results further prove the stability, advancement, and robustness of the ADCNet architecture. For the convenience of the community, we develop the first online platform (https://ADCNet.idruglab.cn) for the prediction of ADCs activity based on the optimal ADCNet model, and the source code is publicly available at https://github.com/idrugLab/ADCNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
frank完成签到,获得积分0
2秒前
小cc完成签到 ,获得积分10
2秒前
科研通AI2S应助栗子采纳,获得30
2秒前
3秒前
Wendy发布了新的文献求助10
4秒前
4秒前
kaitai发布了新的文献求助10
4秒前
愉快的灭男完成签到,获得积分10
4秒前
Joker发布了新的文献求助10
5秒前
frank发布了新的文献求助10
6秒前
儒雅的傲芙完成签到,获得积分10
8秒前
10秒前
青云天完成签到,获得积分20
11秒前
12秒前
Joker完成签到,获得积分20
14秒前
李健应助乔钰涵采纳,获得10
15秒前
田様应助乔钰涵采纳,获得10
15秒前
星辰大海应助乔钰涵采纳,获得10
15秒前
顾矜应助乔钰涵采纳,获得10
15秒前
充电宝应助乔钰涵采纳,获得10
15秒前
科研通AI6应助乔钰涵采纳,获得10
15秒前
科研通AI6应助乔钰涵采纳,获得10
15秒前
科研通AI6应助乔钰涵采纳,获得10
15秒前
bkagyin应助yq采纳,获得10
15秒前
ZJFL发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
17秒前
17秒前
青云天发布了新的文献求助30
17秒前
STAR完成签到 ,获得积分10
20秒前
书白完成签到,获得积分10
21秒前
科研通AI6应助zpp采纳,获得30
21秒前
21秒前
孟见你发布了新的文献求助10
22秒前
搬砖发布了新的文献求助10
22秒前
22秒前
小二郎应助jnshen采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532391
求助须知:如何正确求助?哪些是违规求助? 4621091
关于积分的说明 14576955
捐赠科研通 4560970
什么是DOI,文献DOI怎么找? 2499064
邀请新用户注册赠送积分活动 1479026
关于科研通互助平台的介绍 1450284