ADCNet: a unified framework for predicting the activity of antibody-drug conjugates

计算机科学 稳健性(进化) 人工智能 试验装置 有效载荷(计算) 机器学习 源代码 集合(抽象数据类型) 代表(政治) 接收机工作特性 实现(概率) 程序设计语言 计算机网络 生物化学 化学 网络数据包 政治 政治学 法学 基因 统计 数学
作者
Liye Chen,Biaoshun Li,Yihao Chen,Mujie Lin,Shipeng Zhang,Chenxin Li,Yu Pang,Ling Wang
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2401.09176
摘要

Antibody-drug conjugate (ADC) has revolutionized the field of cancer treatment in the era of precision medicine due to their ability to precisely target cancer cells and release highly effective drug. Nevertheless, the realization of rational design of ADC is very difficult because the relationship between their structures and activities is difficult to understand. In the present study, we introduce a unified deep learning framework called ADCNet to help design potential ADCs. The ADCNet highly integrates the protein representation learning language model ESM-2 and small-molecule representation learning language model FG-BERT models to achieve activity prediction through learning meaningful features from antigen and antibody protein sequences of ADC, SMILES strings of linker and payload, and drug-antibody ratio (DAR) value. Based on a carefully designed and manually tailored ADC data set, extensive evaluation results reveal that ADCNet performs best on the test set compared to baseline machine learning models across all evaluation metrics. For example, it achieves an average prediction accuracy of 87.12%, a balanced accuracy of 0.8689, and an area under receiver operating characteristic curve of 0.9293 on the test set. In addition, cross-validation, ablation experiments, and external independent testing results further prove the stability, advancement, and robustness of the ADCNet architecture. For the convenience of the community, we develop the first online platform (https://ADCNet.idruglab.cn) for the prediction of ADCs activity based on the optimal ADCNet model, and the source code is publicly available at https://github.com/idrugLab/ADCNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KING完成签到,获得积分10
1秒前
1秒前
L7.完成签到,获得积分10
2秒前
优雅的皮卡丘完成签到,获得积分10
2秒前
shrimp5215完成签到,获得积分10
2秒前
宗剑完成签到,获得积分10
3秒前
111关闭了111文献求助
3秒前
彪行天下完成签到,获得积分10
3秒前
遇见完成签到 ,获得积分10
4秒前
黄油可颂完成签到 ,获得积分10
4秒前
秦时明月完成签到,获得积分10
5秒前
Shaynin完成签到,获得积分10
5秒前
Jabowoo完成签到,获得积分10
5秒前
ZZJ111完成签到,获得积分10
5秒前
5秒前
现代大神完成签到,获得积分10
6秒前
_Forelsket_完成签到,获得积分10
7秒前
小饼一定要上岸完成签到,获得积分10
8秒前
CA274ABTFY完成签到,获得积分10
8秒前
8秒前
8秒前
yiluyouni完成签到,获得积分10
8秒前
lilac完成签到,获得积分10
9秒前
drleslie完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
清脆靳关注了科研通微信公众号
10秒前
无情的问枫完成签到 ,获得积分10
10秒前
雷欧奥特曼完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
皮皮虾完成签到,获得积分10
11秒前
牛马完成签到,获得积分10
11秒前
111发布了新的文献求助10
11秒前
12秒前
尊敬的扬完成签到,获得积分20
12秒前
六也完成签到,获得积分10
12秒前
zhaoxiaonuan完成签到,获得积分10
13秒前
13秒前
GU完成签到,获得积分10
13秒前
Qingzhu完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671659
求助须知:如何正确求助?哪些是违规求助? 4921045
关于积分的说明 15135488
捐赠科研通 4830525
什么是DOI,文献DOI怎么找? 2587125
邀请新用户注册赠送积分活动 1540733
关于科研通互助平台的介绍 1499131