已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DeepDualEPI: Predicting Promoter-Enhancer Interactions Based on DNA Sequence and Genomic Signals

深度学习 计算机科学 增强子 人工智能 计算生物学 模式识别(心理学) 机器学习 基因 生物 遗传学 基因表达
作者
Tao Song,Haizheng Song,Zhiyi Pan,Yuan Gao,Yang Qing,Xingguang Wang
标识
DOI:10.1109/bibm58861.2023.10385972
摘要

Enhancer-promoter interactions are one of the essential mechanisms in the regulation of gene expression, and Accurate identification of enhancer-promoter interactions (EPIs) is challenging. In recent years, many deep learning methods have been used for EPI prediction. In this study, we propose DeepDualEPI, a dual-channel deep learning model based on genomic signals and DNA sequences, for predicting enhancer-promoter interactions (EPI). We used network architectures such as Dilated CNN, BiLSTM, and Transformer to process genomic signals, and network architectures such as multiscale CNN to extract DNA sequence features, and finally obtained hybrid features and output EPI prediction probabilities. To obtain the best combination of parameters for the model, we conducted several ablation experiments to optimize the model parameters. And to validate the performance of DeepDualEPI, we conducted experiments on four independent test sets to verify the generalization ability of the model. Compared with other state-of-the-art EPI prediction models, the DeepDualEPI model shows significant improvement in both AUC and AUPR evaluation metrics and experimentally demonstrates that better results are achieved on every chromosome, which proves that our model can stably perform EPI prediction across cell lines. And this paper demonstrates through ablation experiments that the inclusion of DNA sequence information can improve the performance of the model. Therefore, the two-channel hybrid feature deep learning approach via genomic signals and DNA sequences proposed in this paper helps to improve the overall accuracy of EPI prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
良辰应助乐观的镜子采纳,获得10
3秒前
iWatchTheMoon应助Liver采纳,获得10
4秒前
科研通AI2S应助努力羊羊采纳,获得10
5秒前
6秒前
7秒前
Ran完成签到,获得积分20
8秒前
仂尤完成签到 ,获得积分10
10秒前
板凳完成签到 ,获得积分10
10秒前
Ran发布了新的文献求助10
11秒前
12秒前
yan完成签到 ,获得积分10
13秒前
13秒前
xjcy应助Garry采纳,获得10
13秒前
oceanao应助fufu采纳,获得10
14秒前
乐乐应助橙子采纳,获得10
14秒前
调研昵称发布了新的文献求助10
16秒前
19秒前
小马甲应助nater4ver采纳,获得10
21秒前
22秒前
天天快乐应助科研通管家采纳,获得10
22秒前
不安青牛应助科研通管家采纳,获得10
22秒前
Owen应助科研通管家采纳,获得10
22秒前
Singularity应助科研通管家采纳,获得20
22秒前
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
上官若男应助科研通管家采纳,获得10
22秒前
23秒前
25秒前
26秒前
27秒前
momo发布了新的文献求助10
28秒前
zw完成签到 ,获得积分10
30秒前
娜娜发布了新的文献求助10
30秒前
月亮球发布了新的文献求助10
31秒前
nater4ver发布了新的文献求助10
31秒前
32秒前
小乐完成签到,获得积分10
35秒前
一个小菜鸡完成签到,获得积分10
40秒前
40秒前
月亮球完成签到,获得积分20
41秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161905
求助须知:如何正确求助?哪些是违规求助? 2813139
关于积分的说明 7898729
捐赠科研通 2472140
什么是DOI,文献DOI怎么找? 1316366
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129