LightK-DSGCN: Depression Detection in EEGs with Lightweight Kalman Filter-aided Dual-Stream Graph Convolutional Networks

计算机科学 脑电图 人工智能 卷积神经网络 模式识别(心理学) 特征提取 卡尔曼滤波器 图形 理论计算机科学 心理学 精神科
作者
Yanshen Sun,Jianger Yu,Chang‐Tien Lu
标识
DOI:10.1109/bibm58861.2023.10385659
摘要

Automated detection of depression using Electroencephalogram (EEG) signals is crucial for advanced disease treatment. However, existing EEG detection models still face challenges. 1) EEG signals are susceptible to noise interference and exhibit a high level of randomness. 2) Manual denoising and feature selection potentially introduce human bias. 3) The integrated message propagation across both spatial and temporal domains is not fully explored. Therefore, this paper proposes LightK-DSGCN, Enhancing Depression Detection with Lightweight Kalman Filter-aided Dual-Stream Graph Convolutional Networks, a novel framework for identifying characteristics EEG patterns of depression patients. LightK-DSGCN leverages dual-stream graph neural networks to simultaneously explore spatiotemporal features, effectively capturing the distinctive patterns exhibited by depression patients. Firstly, the EEG signals are decomposed into temporal and spatial components at each time point. Then, the temporal features are embedded using a dilation temporal convolutional network, while the spatial features are obtained through a graph convolutional network. Moreover, a lightweight Kalman filter combined with recurrent neural networks is proposed to denoise and align the spatiotemporal features, enabling the extraction of detailed information from multiple perspectives. Experimental results on two real-world datasets demonstrate the superiority of our LightK-DSGCN over state-of-the-art methods in detecting depression using EEG signals. LightK-DSGCN provides a promising approach for automated depression detection in clinical practice. The code can be found here.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助釜底游鱼采纳,获得10
1秒前
沉静的颦发布了新的文献求助10
1秒前
小蘑菇应助邹坤采纳,获得10
1秒前
思源应助科研通管家采纳,获得30
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
Lucas应助念姬采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
1秒前
Ava应助科研通管家采纳,获得10
1秒前
wen完成签到 ,获得积分10
1秒前
ding应助科研通管家采纳,获得10
1秒前
1秒前
牂牂完成签到 ,获得积分10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
风中冰香应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
yunny完成签到,获得积分10
3秒前
may完成签到,获得积分10
3秒前
微光应助zhouzhou采纳,获得10
4秒前
JamesPei应助池番采纳,获得10
4秒前
hhhhhg完成签到,获得积分10
5秒前
失眠紫真发布了新的文献求助10
5秒前
5秒前
5秒前
顾矜应助Jennie采纳,获得10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546479
求助须知:如何正确求助?哪些是违规求助? 4632273
关于积分的说明 14626188
捐赠科研通 4573977
什么是DOI,文献DOI怎么找? 2507901
邀请新用户注册赠送积分活动 1484538
关于科研通互助平台的介绍 1455722