LightK-DSGCN: Depression Detection in EEGs with Lightweight Kalman Filter-aided Dual-Stream Graph Convolutional Networks

计算机科学 脑电图 人工智能 卷积神经网络 模式识别(心理学) 特征提取 卡尔曼滤波器 图形 理论计算机科学 心理学 精神科
作者
Yanshen Sun,Jianger Yu,Chang‐Tien Lu
标识
DOI:10.1109/bibm58861.2023.10385659
摘要

Automated detection of depression using Electroencephalogram (EEG) signals is crucial for advanced disease treatment. However, existing EEG detection models still face challenges. 1) EEG signals are susceptible to noise interference and exhibit a high level of randomness. 2) Manual denoising and feature selection potentially introduce human bias. 3) The integrated message propagation across both spatial and temporal domains is not fully explored. Therefore, this paper proposes LightK-DSGCN, Enhancing Depression Detection with Lightweight Kalman Filter-aided Dual-Stream Graph Convolutional Networks, a novel framework for identifying characteristics EEG patterns of depression patients. LightK-DSGCN leverages dual-stream graph neural networks to simultaneously explore spatiotemporal features, effectively capturing the distinctive patterns exhibited by depression patients. Firstly, the EEG signals are decomposed into temporal and spatial components at each time point. Then, the temporal features are embedded using a dilation temporal convolutional network, while the spatial features are obtained through a graph convolutional network. Moreover, a lightweight Kalman filter combined with recurrent neural networks is proposed to denoise and align the spatiotemporal features, enabling the extraction of detailed information from multiple perspectives. Experimental results on two real-world datasets demonstrate the superiority of our LightK-DSGCN over state-of-the-art methods in detecting depression using EEG signals. LightK-DSGCN provides a promising approach for automated depression detection in clinical practice. The code can be found here.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
刚刚
刚刚
甜甜契完成签到,获得积分10
刚刚
ding应助小武wwwww采纳,获得10
1秒前
1秒前
贴贴完成签到,获得积分10
1秒前
慕青应助HHHH采纳,获得20
1秒前
Lucas应助ephore采纳,获得30
1秒前
只一只鱼完成签到,获得积分10
2秒前
生态所大神完成签到,获得积分10
2秒前
隐形曼青应助cg采纳,获得10
2秒前
Leon完成签到,获得积分10
2秒前
EinZwei发布了新的文献求助10
3秒前
思源应助111采纳,获得10
3秒前
蒽女士完成签到,获得积分10
3秒前
烟花应助1234采纳,获得10
3秒前
4秒前
李健的小迷弟应助Wvzzzzz采纳,获得10
4秒前
4秒前
4秒前
浮游应助TanFT采纳,获得10
5秒前
浮游应助TanFT采纳,获得10
5秒前
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
杨三多发布了新的文献求助10
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
今后应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
无花果应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
彭于晏应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得30
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5111733
求助须知:如何正确求助?哪些是违规求助? 4319895
关于积分的说明 13460131
捐赠科研通 4150717
什么是DOI,文献DOI怎么找? 2274399
邀请新用户注册赠送积分活动 1276292
关于科研通互助平台的介绍 1214447