LightK-DSGCN: Depression Detection in EEGs with Lightweight Kalman Filter-aided Dual-Stream Graph Convolutional Networks

计算机科学 脑电图 人工智能 卷积神经网络 模式识别(心理学) 特征提取 卡尔曼滤波器 图形 理论计算机科学 心理学 精神科
作者
Yanshen Sun,Jianger Yu,Chang‐Tien Lu
标识
DOI:10.1109/bibm58861.2023.10385659
摘要

Automated detection of depression using Electroencephalogram (EEG) signals is crucial for advanced disease treatment. However, existing EEG detection models still face challenges. 1) EEG signals are susceptible to noise interference and exhibit a high level of randomness. 2) Manual denoising and feature selection potentially introduce human bias. 3) The integrated message propagation across both spatial and temporal domains is not fully explored. Therefore, this paper proposes LightK-DSGCN, Enhancing Depression Detection with Lightweight Kalman Filter-aided Dual-Stream Graph Convolutional Networks, a novel framework for identifying characteristics EEG patterns of depression patients. LightK-DSGCN leverages dual-stream graph neural networks to simultaneously explore spatiotemporal features, effectively capturing the distinctive patterns exhibited by depression patients. Firstly, the EEG signals are decomposed into temporal and spatial components at each time point. Then, the temporal features are embedded using a dilation temporal convolutional network, while the spatial features are obtained through a graph convolutional network. Moreover, a lightweight Kalman filter combined with recurrent neural networks is proposed to denoise and align the spatiotemporal features, enabling the extraction of detailed information from multiple perspectives. Experimental results on two real-world datasets demonstrate the superiority of our LightK-DSGCN over state-of-the-art methods in detecting depression using EEG signals. LightK-DSGCN provides a promising approach for automated depression detection in clinical practice. The code can be found here.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
w。发布了新的文献求助10
2秒前
2秒前
5秒前
5秒前
YangLi发布了新的文献求助10
6秒前
Ember完成签到 ,获得积分10
7秒前
8秒前
8秒前
WXM发布了新的文献求助10
9秒前
9秒前
9秒前
CodeCraft应助顶顶顶采纳,获得10
9秒前
11秒前
7分运气完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
yznfly应助shiyongli采纳,获得50
13秒前
Marzuk发布了新的文献求助10
13秒前
Nora完成签到 ,获得积分10
13秒前
飘逸秋荷完成签到,获得积分10
14秒前
15秒前
Radio发布了新的文献求助10
16秒前
共享精神应助贪玩飞珍采纳,获得10
16秒前
18秒前
18秒前
18秒前
18秒前
服了您完成签到 ,获得积分10
19秒前
20秒前
小怪兽完成签到,获得积分10
20秒前
Maestro_S应助科研通管家采纳,获得10
21秒前
pluto应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
顶顶顶发布了新的文献求助10
21秒前
Maestro_S应助科研通管家采纳,获得10
22秒前
pluto应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
Maestro_S应助科研通管家采纳,获得10
22秒前
8R60d8应助科研通管家采纳,获得10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495079
求助须知:如何正确求助?哪些是违规求助? 4592859
关于积分的说明 14438940
捐赠科研通 4525695
什么是DOI,文献DOI怎么找? 2479581
邀请新用户注册赠送积分活动 1464436
关于科研通互助平台的介绍 1437296