LightK-DSGCN: Depression Detection in EEGs with Lightweight Kalman Filter-aided Dual-Stream Graph Convolutional Networks

计算机科学 脑电图 人工智能 卷积神经网络 模式识别(心理学) 特征提取 卡尔曼滤波器 图形 理论计算机科学 心理学 精神科
作者
Yanshen Sun,Jianger Yu,Chang‐Tien Lu
标识
DOI:10.1109/bibm58861.2023.10385659
摘要

Automated detection of depression using Electroencephalogram (EEG) signals is crucial for advanced disease treatment. However, existing EEG detection models still face challenges. 1) EEG signals are susceptible to noise interference and exhibit a high level of randomness. 2) Manual denoising and feature selection potentially introduce human bias. 3) The integrated message propagation across both spatial and temporal domains is not fully explored. Therefore, this paper proposes LightK-DSGCN, Enhancing Depression Detection with Lightweight Kalman Filter-aided Dual-Stream Graph Convolutional Networks, a novel framework for identifying characteristics EEG patterns of depression patients. LightK-DSGCN leverages dual-stream graph neural networks to simultaneously explore spatiotemporal features, effectively capturing the distinctive patterns exhibited by depression patients. Firstly, the EEG signals are decomposed into temporal and spatial components at each time point. Then, the temporal features are embedded using a dilation temporal convolutional network, while the spatial features are obtained through a graph convolutional network. Moreover, a lightweight Kalman filter combined with recurrent neural networks is proposed to denoise and align the spatiotemporal features, enabling the extraction of detailed information from multiple perspectives. Experimental results on two real-world datasets demonstrate the superiority of our LightK-DSGCN over state-of-the-art methods in detecting depression using EEG signals. LightK-DSGCN provides a promising approach for automated depression detection in clinical practice. The code can be found here.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
汉堡包应助复杂的之卉采纳,获得10
1秒前
1秒前
完美世界应助mimi采纳,获得10
1秒前
科目三应助陈+1采纳,获得10
1秒前
BY0131发布了新的文献求助10
2秒前
薄饼哥丶完成签到,获得积分10
2秒前
迷路的十四应助而风不止采纳,获得10
3秒前
水知道完成签到 ,获得积分10
3秒前
3秒前
NexusExplorer应助阿赖采纳,获得10
4秒前
ChenYX发布了新的文献求助20
5秒前
5秒前
Lyrich发布了新的文献求助10
5秒前
传奇3应助犄角旮旯采纳,获得10
5秒前
7秒前
7秒前
9秒前
9秒前
EpQAQ发布了新的文献求助10
9秒前
9秒前
大翟发布了新的文献求助10
10秒前
summer应助听风者采纳,获得10
12秒前
wanci应助听风者采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
txxy发布了新的文献求助10
13秒前
给爷冲奶粉完成签到,获得积分10
13秒前
猪猪hero发布了新的文献求助10
14秒前
绿色催化发布了新的文献求助10
14秒前
JamesPei应助科研通管家采纳,获得10
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得200
15秒前
彭于晏应助科研通管家采纳,获得50
15秒前
Orange应助科研通管家采纳,获得10
15秒前
jory应助科研通管家采纳,获得10
15秒前
隐形曼青应助科研通管家采纳,获得30
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593888
求助须知:如何正确求助?哪些是违规求助? 4679724
关于积分的说明 14811268
捐赠科研通 4645341
什么是DOI,文献DOI怎么找? 2534709
邀请新用户注册赠送积分活动 1502747
关于科研通互助平台的介绍 1469450