LightK-DSGCN: Depression Detection in EEGs with Lightweight Kalman Filter-aided Dual-Stream Graph Convolutional Networks

计算机科学 脑电图 人工智能 卷积神经网络 模式识别(心理学) 特征提取 卡尔曼滤波器 图形 理论计算机科学 心理学 精神科
作者
Yanshen Sun,Jianger Yu,Chang‐Tien Lu
标识
DOI:10.1109/bibm58861.2023.10385659
摘要

Automated detection of depression using Electroencephalogram (EEG) signals is crucial for advanced disease treatment. However, existing EEG detection models still face challenges. 1) EEG signals are susceptible to noise interference and exhibit a high level of randomness. 2) Manual denoising and feature selection potentially introduce human bias. 3) The integrated message propagation across both spatial and temporal domains is not fully explored. Therefore, this paper proposes LightK-DSGCN, Enhancing Depression Detection with Lightweight Kalman Filter-aided Dual-Stream Graph Convolutional Networks, a novel framework for identifying characteristics EEG patterns of depression patients. LightK-DSGCN leverages dual-stream graph neural networks to simultaneously explore spatiotemporal features, effectively capturing the distinctive patterns exhibited by depression patients. Firstly, the EEG signals are decomposed into temporal and spatial components at each time point. Then, the temporal features are embedded using a dilation temporal convolutional network, while the spatial features are obtained through a graph convolutional network. Moreover, a lightweight Kalman filter combined with recurrent neural networks is proposed to denoise and align the spatiotemporal features, enabling the extraction of detailed information from multiple perspectives. Experimental results on two real-world datasets demonstrate the superiority of our LightK-DSGCN over state-of-the-art methods in detecting depression using EEG signals. LightK-DSGCN provides a promising approach for automated depression detection in clinical practice. The code can be found here.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心玉兰发布了新的文献求助10
刚刚
割牙龈肉发布了新的文献求助10
1秒前
李李李发布了新的文献求助10
2秒前
浮游应助anwen采纳,获得10
3秒前
斯文败类应助壮壮采纳,获得10
3秒前
Rain应助Wang采纳,获得10
5秒前
6秒前
脑洞疼应助开放青旋采纳,获得30
6秒前
Lucas应助长情胡萝卜采纳,获得30
7秒前
热心玉兰完成签到,获得积分10
8秒前
8秒前
真真发布了新的文献求助10
8秒前
8秒前
共享精神应助小分队采纳,获得10
8秒前
10秒前
高大的冰双完成签到,获得积分10
10秒前
zzm完成签到,获得积分10
10秒前
刚国忠发布了新的文献求助10
10秒前
11秒前
11秒前
yxy完成签到,获得积分10
11秒前
Owen应助芋泥桃桃采纳,获得10
11秒前
12秒前
蝉鸣一夏发布了新的文献求助10
12秒前
liulu完成签到 ,获得积分10
12秒前
13秒前
14秒前
14秒前
yzm完成签到,获得积分10
14秒前
Jeson完成签到,获得积分0
15秒前
魔丸发布了新的文献求助10
15秒前
15秒前
16秒前
机灵的波比应助Mr.Ren采纳,获得10
16秒前
加速度完成签到,获得积分10
16秒前
QRE发布了新的文献求助20
17秒前
SJJ应助枫叶人生采纳,获得10
17秒前
小分队发布了新的文献求助10
19秒前
落雨发布了新的文献求助10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642352
关于积分的说明 14667621
捐赠科研通 4583738
什么是DOI,文献DOI怎么找? 2514386
邀请新用户注册赠送积分活动 1488750
关于科研通互助平台的介绍 1459336