LandmarkBreaker: A proactive method to obstruct DeepFakes via disrupting facial landmark extraction

地标 计算机科学 人工智能 面子(社会学概念) 光学(聚焦) 对抗制 剪裁(形态学) 深度学习 遮罩(插图) 机器学习 计算机视觉 模式识别(心理学) 艺术 社会科学 语言学 哲学 物理 社会学 光学 视觉艺术
作者
Yuezun Li,Peipei Sun,Honggang Qi,Siwei Lyu
出处
期刊:Computer Vision and Image Understanding [Elsevier]
卷期号:240: 103935-103935
标识
DOI:10.1016/j.cviu.2024.103935
摘要

The recent development of Deep Neural Networks (DNN) has significantly increased the realism of AI-synthesized faces, with the most notable examples being the DeepFakes. In particular, DeepFake can synthesize the face of the target subject from the face of another subject, while retaining the same face attributes. With the increased number of social media portals, DeepFake videos rapidly spread through the Internet, causing a broad negative impact on society. Recent countermeasures to combat DeepFake focus on detection, a passive defense that is not able to prevent or slow down the generation of DeepFakes. Therefore in this paper, we focus on proactive defense and describe a new method named LandmarkBreaker, which is the first dedicated solution to obstruct the generation of DeepFake videos by disrupting facial landmark extraction, inspired by the observation that facial landmark extraction is an indispensable step for face alignment required in DeepFake synthesis. To disrupt facial landmark extraction, we design adversarial perturbations meticulously by optimizing a loss function in an iterative manner. Furthermore, we develop LandmarkBreaker++, which can further reduce the perceptibility of adversarial perturbations using a gradient clipping and face masking strategy. We validate our method on three state-of-the-art facial landmark extractors and investigate the defense performance on a recent Celeb-DF dataset, which demonstrates the efficacy of our method in obstructing the generation of DeepFake videos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
务实盼海完成签到 ,获得积分20
1秒前
小张张完成签到,获得积分10
1秒前
YAN完成签到,获得积分10
1秒前
隐形曼青应助卑以自牧采纳,获得10
2秒前
脑洞疼应助xieunx采纳,获得10
2秒前
wjw关闭了wjw文献求助
2秒前
夜白完成签到,获得积分0
2秒前
Cynthia完成签到,获得积分10
2秒前
美丽小蕾完成签到,获得积分10
2秒前
心花怒放完成签到,获得积分20
2秒前
林上草应助xzn1123采纳,获得10
3秒前
qwt_hello发布了新的文献求助10
4秒前
5秒前
科研虎完成签到,获得积分10
5秒前
大眼的平松完成签到,获得积分10
5秒前
丶呆久自然萌完成签到,获得积分10
5秒前
5秒前
6秒前
淡淡的夜山完成签到,获得积分10
6秒前
SYLH应助阿勒泰采纳,获得10
7秒前
7秒前
7秒前
菊菊关注了科研通微信公众号
8秒前
8秒前
8秒前
水星MERCURY应助雨夜星空采纳,获得10
9秒前
9秒前
9秒前
10秒前
九九完成签到,获得积分10
10秒前
dwl完成签到 ,获得积分10
10秒前
懵懂的尔风完成签到 ,获得积分10
10秒前
10秒前
456完成签到,获得积分10
10秒前
科研通AI5应助以恒之心采纳,获得10
11秒前
易哒哒发布了新的文献求助10
12秒前
12秒前
13秒前
微笑完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762