LandmarkBreaker: A proactive method to obstruct DeepFakes via disrupting facial landmark extraction

地标 计算机科学 人工智能 面子(社会学概念) 光学(聚焦) 对抗制 剪裁(形态学) 深度学习 遮罩(插图) 机器学习 计算机视觉 模式识别(心理学) 艺术 社会科学 语言学 哲学 物理 社会学 光学 视觉艺术
作者
Yuezun Li,Peipei Sun,Honggang Qi,Siwei Lyu
出处
期刊:Computer Vision and Image Understanding [Elsevier BV]
卷期号:240: 103935-103935
标识
DOI:10.1016/j.cviu.2024.103935
摘要

The recent development of Deep Neural Networks (DNN) has significantly increased the realism of AI-synthesized faces, with the most notable examples being the DeepFakes. In particular, DeepFake can synthesize the face of the target subject from the face of another subject, while retaining the same face attributes. With the increased number of social media portals, DeepFake videos rapidly spread through the Internet, causing a broad negative impact on society. Recent countermeasures to combat DeepFake focus on detection, a passive defense that is not able to prevent or slow down the generation of DeepFakes. Therefore in this paper, we focus on proactive defense and describe a new method named LandmarkBreaker, which is the first dedicated solution to obstruct the generation of DeepFake videos by disrupting facial landmark extraction, inspired by the observation that facial landmark extraction is an indispensable step for face alignment required in DeepFake synthesis. To disrupt facial landmark extraction, we design adversarial perturbations meticulously by optimizing a loss function in an iterative manner. Furthermore, we develop LandmarkBreaker++, which can further reduce the perceptibility of adversarial perturbations using a gradient clipping and face masking strategy. We validate our method on three state-of-the-art facial landmark extractors and investigate the defense performance on a recent Celeb-DF dataset, which demonstrates the efficacy of our method in obstructing the generation of DeepFake videos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xxfsx应助清爽的铭采纳,获得10
1秒前
完美世界应助问奈何采纳,获得10
2秒前
snowman完成签到 ,获得积分10
3秒前
3秒前
JamesPei应助Taegu采纳,获得10
3秒前
Owen应助kl小子采纳,获得10
5秒前
米兰无敌发布了新的文献求助10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
时差完成签到,获得积分10
6秒前
汉堡包应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得200
7秒前
7秒前
7秒前
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
8秒前
Tourist应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
浮游应助科研通管家采纳,获得10
8秒前
9秒前
冷傲长颈鹿完成签到,获得积分10
9秒前
Mic关闭了Mic文献求助
10秒前
O基米德发布了新的文献求助10
11秒前
不想说完成签到,获得积分10
11秒前
clean发布了新的文献求助10
11秒前
11秒前
清秀凉面发布了新的文献求助10
12秒前
12秒前
cmmm完成签到 ,获得积分10
12秒前
snowman关注了科研通微信公众号
12秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263241
求助须知:如何正确求助?哪些是违规求助? 4423888
关于积分的说明 13771111
捐赠科研通 4298829
什么是DOI,文献DOI怎么找? 2358729
邀请新用户注册赠送积分活动 1354999
关于科研通互助平台的介绍 1316209