Determination of Trace Organic Contaminant Concentration via Machine Classification of Surface-Enhanced Raman Spectra

高光谱成像 人工智能 分析物 罗丹明6G 哈达玛变换 拉曼光谱 分析化学(期刊) 生物系统 计算机科学 机器学习 化学 数学 光学 环境化学 色谱法 物理 数学分析 生物 有机化学 分子
作者
Vishnu Jayaprakash,Jae Bem You,Chiranjeevi Kanike,Jinfeng Liu,Christopher McCallum,Xuehua Zhang
出处
期刊:Environmental Science & Technology [American Chemical Society]
标识
DOI:10.1021/acs.est.3c06447
摘要

Surface-enhanced Raman spectroscopy (SERS) has been well explored as a highly effective characterization technique that is capable of chemical pollutant detection and identification at very low concentrations. Machine learning has been previously used to identify compounds based on SERS spectral data. However, utilization of SERS to quantify concentrations, with or without machine learning, has been difficult due to the spectral intensity being sensitive to confounding factors such as the substrate parameters, orientation of the analyte, and sample preparation technique. Here, we demonstrate an approach for predicting the concentration of sample pollutants from SERS spectra using machine learning. Frequency domain transform methods, including the Fourier and Walsh–Hadamard transforms, are applied to spectral data sets of three analytes (rhodamine 6G, chlorpyrifos, and triclosan), which are then used to train machine learning algorithms. Using standard machine learning models, the concentration of the sample pollutants is predicted with >80% cross-validation accuracy from raw SERS data. A cross-validation accuracy of 85% was achieved using deep learning for a moderately sized data set (∼100 spectra), and 70–80% was achieved for small data sets (∼50 spectra). Performance can be maintained within this range even when combining various sample preparation techniques and environmental media interference. Additionally, as a spectral pretreatment, the Fourier and Hadamard transforms are shown to consistently improve prediction accuracy across multiple data sets. Finally, standard models were shown to accurately identify characteristic peaks of compounds via analysis of their importance scores, further verifying their predictive value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玛珂巴巴珂完成签到,获得积分10
刚刚
刚刚
知性的真发布了新的文献求助10
1秒前
1秒前
1秒前
清脆语海发布了新的文献求助10
2秒前
二丙发布了新的文献求助10
2秒前
咪吖完成签到 ,获得积分10
3秒前
雪白起眸发布了新的文献求助30
3秒前
3秒前
3秒前
4秒前
淡定亦凝完成签到,获得积分10
4秒前
小高同学发布了新的文献求助10
5秒前
小朋友完成签到,获得积分10
5秒前
不配.应助伊麦香城采纳,获得10
5秒前
淡定亦凝发布了新的文献求助10
7秒前
7秒前
10秒前
哇哈哈完成签到,获得积分10
13秒前
英姑应助NJY采纳,获得30
14秒前
14秒前
韭菜盒子发布了新的文献求助10
14秒前
赘婿应助雪白起眸采纳,获得10
14秒前
景辣条应助十三采纳,获得10
14秒前
淡dan关注了科研通微信公众号
17秒前
小谢完成签到,获得积分10
19秒前
20秒前
20秒前
夏青荷发布了新的文献求助10
22秒前
22秒前
慕青应助韭菜盒子采纳,获得10
23秒前
伴你笑完成签到,获得积分20
23秒前
大力荷花发布了新的文献求助10
25秒前
十三完成签到,获得积分10
26秒前
勤恳的磬发布了新的文献求助10
26秒前
Akim应助顺心的水之采纳,获得10
28秒前
ccc完成签到,获得积分10
29秒前
29秒前
斯文败类应助小面包采纳,获得10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136176
求助须知:如何正确求助?哪些是违规求助? 2787079
关于积分的说明 7780454
捐赠科研通 2443217
什么是DOI,文献DOI怎么找? 1298964
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870