GFSPP-YOLO: A Light YOLO Model Based on Group Fast Spatial Pyramid Pooling

联营 棱锥(几何) 计算机科学 帕斯卡(单位) 目标检测 卷积(计算机科学) 移动设备 人工智能 深度学习 骨干网 分布式计算 实时计算 计算机视觉 模式识别(心理学) 计算机网络 人工神经网络 物理 光学 程序设计语言 操作系统
作者
Shaojie Xu,Yujiao Ji,Guangcheng Wang,Lei Jin,Han Wang
标识
DOI:10.1109/icicn59530.2023.10393445
摘要

The YOLO object detection model for PC environments is widely used in computer vision due to its high accuracy and good real-time performance. However, when faced with the embedded environment of mobile devices, the use of YOLO models in mobile devices is still challenging due to the large computational requirements and memory consumption. To address these issues, this paper proposes a lightweight YOLO model based on grouped fast spatial pyramidal pooling. Different from the existing YOLOv5 model, firstly, at the end of the backbone network, the receptive field is expanded using the ideas of CSPNet and group convolution to build a group fast spatial pyramidal pooling structure GFSPP to avoid false and missed detections caused by image distortion; and a CBAM attention mechanism is introduced in the backbone network to improve the characterization of network features. Secondly, the slim neck paradigm combined with the lightweight convolutional module GhostConv is used in the neck network to compress the network structure. Finally, migration learning techniques are used to further improve the detection performance of the model. Experimental results show that the GFSPP-YOLO model proposed in this paper reduces the complexity and parameter costs by 10% and 3.5% respectively compared to the traditional YOLOv5s model on the PASCAL VOC2007+12 dataset, while the mAP0.5 is improved by 2%, making the model in this paper more suitable for applications in embedded environments of mobile terminals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yuliya完成签到,获得积分10
刚刚
zhiyao2025完成签到,获得积分10
1秒前
1秒前
留胡子的扬完成签到,获得积分10
1秒前
Lucifer完成签到,获得积分10
2秒前
碧海流花发布了新的文献求助10
3秒前
韩笑发布了新的文献求助10
3秒前
风中的雍发布了新的文献求助20
3秒前
wildeager完成签到,获得积分10
4秒前
4秒前
4秒前
寒冰发布了新的文献求助10
4秒前
mmy完成签到 ,获得积分10
5秒前
善学以致用应助奔跑西木采纳,获得10
5秒前
他山之石完成签到 ,获得积分10
5秒前
arsenal发布了新的文献求助10
6秒前
诚c发布了新的文献求助10
6秒前
12发布了新的文献求助10
6秒前
7秒前
iop发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
晓驿应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
且慢应助科研通管家采纳,获得20
8秒前
浮游应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
红叶应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
dan发布了新的文献求助10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472668
求助须知:如何正确求助?哪些是违规求助? 4574935
关于积分的说明 14349182
捐赠科研通 4502253
什么是DOI,文献DOI怎么找? 2467064
邀请新用户注册赠送积分活动 1454993
关于科研通互助平台的介绍 1429237