Design of human ACE2 mimic miniprotein binders that interact with RBD of SARS-CoV-2 variants of concerns

计算生物学 2019年冠状病毒病(COVID-19) 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 结合亲和力 人性化鼠标 生物 化学 遗传学 疾病 传染病(医学专业) 医学 受体 体内 病理
作者
Neeraj Gaur,Zeenat Khakerwala,Ravindra D. Makde
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:: 1-13 被引量:1
标识
DOI:10.1080/07391102.2024.2310789
摘要

The world of medicine demands from the research community solutions to the emerging problem of SARS-CoV-2 variants and other such potential global pandemics. With advantages of specificity over small molecule drugs and designability over antibodies, miniprotein therapeutics offers a unique solution to the threats of rapidly emerging SARS-CoV-2 variants. Unfortunately, most of the promising miniprotein binders are de novo designed and it is not viable to generate molecules for each new variant. Therefore in this study, we demonstrate a method for design of miniprotein mimics from the interaction interphase of human angiotensin converting enzyme 2 (ACE2). ACE2 is the natural interacting partner for the SARS-CoV-2 spike receptor binding domain (RBD) and acts as a recognition molecule for viral entry into the host cells. Starting with ACE2 N-terminal triple helix interaction interphase, we generated more than 70 miniprotein sequences. Employing Rosetta folding and docking scores we selected 10 promising miniprotein candidates amongst which 3 were found to be soluble in lab studies. Further, using molecular mechanics (MM) calculations on molecular dynamics (MD) trajectories we test interaction of miniproteins with RBD from various variants of concern (VOC). Presently, we report two key findings; miniproteins in this study are generated using less than 10 lab testing experiments, yet when tested through in-vitro experiments, they show submicro to nanomolar affinities towards SARS-CoV-2 RBD. Also in simulation studies, when compared with previously developed therapeutics, our miniproteins display remarkable ability to mimic ACE2 interphase; making them an ideal solution to the ever evolving problem of VOCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wanfeng完成签到,获得积分10
刚刚
duanhuiyuan应助千里采纳,获得10
3秒前
13秒前
等待孤风应助崔哥采纳,获得10
14秒前
15秒前
16秒前
xianjingli完成签到,获得积分10
17秒前
繁荣的秋完成签到,获得积分10
18秒前
长林风完成签到,获得积分10
19秒前
cxy发布了新的文献求助10
19秒前
大卫戴完成签到 ,获得积分10
19秒前
23秒前
传奇3应助lara采纳,获得10
25秒前
26秒前
27秒前
29秒前
29秒前
30秒前
31秒前
xianjingli发布了新的文献求助30
32秒前
断鸿完成签到 ,获得积分10
32秒前
华仔应助CKK采纳,获得10
33秒前
共享精神应助QZZ采纳,获得10
33秒前
Jasper应助繁荣的秋采纳,获得10
34秒前
34秒前
马铃薯完成签到,获得积分10
37秒前
单身的梦山完成签到 ,获得积分10
38秒前
充电宝应助123456采纳,获得20
40秒前
40秒前
张益萌完成签到,获得积分0
41秒前
kk发布了新的文献求助50
44秒前
48秒前
研友_nV2ROn完成签到,获得积分10
50秒前
50秒前
菠萝完成签到 ,获得积分10
51秒前
51秒前
52秒前
54秒前
希望天下0贩的0应助言叶采纳,获得10
54秒前
55秒前
高分求助中
Востребованный временем 2500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3391584
求助须知:如何正确求助?哪些是违规求助? 3002659
关于积分的说明 8804925
捐赠科研通 2689266
什么是DOI,文献DOI怎么找? 1473018
科研通“疑难数据库(出版商)”最低求助积分说明 681311
邀请新用户注册赠送积分活动 674200