Interpretable physics-informed domain adaptation paradigm for cross-machine transfer diagnosis

初始化 小波 核(代数) 学习迁移 计算机科学 人工智能 机器学习 模式识别(心理学) 数据挖掘 数学 程序设计语言 组合数学
作者
Chao He,Hongmei Shi,Xiaorong Liu,Jianbo Li
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:288: 111499-111499 被引量:37
标识
DOI:10.1016/j.knosys.2024.111499
摘要

While transfer learning-based intelligent diagnosis has achieved significant breakthroughs, the performance of existing well-known methods still needs urgent improvement, given the increasingly significant distribution discrepancy between source and target domain data from different machines. To tackle this issue, rather than designing domain discrepancy statistical metrics or elaborate network architecture, we delve deep into the interaction and mutual promotion between signal processing and domain adaptation. Inspired by wavelet technology and weight initialization, an end-to-end, succinct, and high-performance physics-informed wavelet domain adaptation network (WIDAN) has been subtly devised, which integrates interpretable wavelet knowledge into the dual-stream convolutional layer with independent weights to cope with extremely challenging cross-machine diagnostic tasks. Specifically, the first-layer weights of a CNN are updated with optimized and informative Laplace or Morlet weights. This approach alleviates troublesome parameter selection, where scaling and translation factors with specific physical interpretations are constrained by the convolution kernel parameters. Additionally, a smooth-assisted scaling factor is introduced to ensure consistency with neural network weights. Furthermore, a dual-stream bottleneck layer is designed to learn reasonable weights to pre-transform different domain data into a uniform common space. This can promote WIDAN to extract domain-invariant features. Holistic evaluations confirm that WIDAN outperforms state-of-the-art models across multiple tasks, indicating that a wide first-layer kernel with optimized wavelet weight initialization can enhance domain transferability, thus validly fostering cross-machine transfer diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
荼蘼如雪发布了新的文献求助10
刚刚
刚刚
曹先生完成签到,获得积分10
1秒前
Felix0917发布了新的文献求助10
1秒前
王乐安完成签到,获得积分10
1秒前
1秒前
asder发布了新的文献求助200
4秒前
yees完成签到,获得积分20
5秒前
太Crazy辣给太Crazy辣的求助进行了留言
5秒前
manto发布了新的文献求助10
5秒前
木子完成签到,获得积分10
5秒前
5秒前
荼蘼如雪完成签到,获得积分10
6秒前
bin完成签到,获得积分10
6秒前
Bio应助22采纳,获得30
6秒前
6秒前
研友_VZG7GZ应助dayuernihao采纳,获得10
7秒前
lxc发布了新的文献求助10
7秒前
Yancy发布了新的文献求助10
8秒前
9秒前
科研通AI6应助yees采纳,获得10
9秒前
无花果应助keeee采纳,获得10
10秒前
11秒前
NexusExplorer应助lydia采纳,获得10
11秒前
Shirley完成签到,获得积分10
12秒前
东方城发布了新的文献求助10
12秒前
12秒前
Leif发布了新的文献求助10
13秒前
14秒前
量子星尘发布了新的文献求助50
14秒前
14秒前
pfshan发布了新的文献求助10
15秒前
桃井尤川完成签到,获得积分10
15秒前
浮游应助Gavin啥也不会采纳,获得10
15秒前
派大星的海洋裤完成签到,获得积分10
15秒前
Yancy完成签到,获得积分20
16秒前
Limity完成签到,获得积分10
16秒前
16秒前
Panjiao完成签到 ,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109426
求助须知:如何正确求助?哪些是违规求助? 4318139
关于积分的说明 13453709
捐赠科研通 4148066
什么是DOI,文献DOI怎么找? 2273021
邀请新用户注册赠送积分活动 1275171
关于科研通互助平台的介绍 1213331