食品科学
抗氧化剂
体外
化学
肠道菌群
益生菌
乳清蛋白
生物化学
抗氧化能力
生物
细菌
遗传学
作者
Xusheng Li,Yan Wang,Yan Jiang,Chuqi Liu,Wenbao Zhang,Weiwen Chen,Lingmin Tian,Jianxia Sun,Caiyong Lai,Weibin Bai
标识
DOI:10.1016/j.foodres.2024.114082
摘要
Anthocyanins are the primary functional pigments in the diet. However, anthocyanins exhibit instability during digestion, coupled with limited bioavailability. Microencapsulation offers anthocyanins a sheltered environment, enhancing their stability and bioactivity. Fructooligosaccharides (FOS) and whey protein (WP) commonly serve as wall materials in microencapsulation and represent a significant source of probiotic functionality. Our prior research successfully established a robust microencapsulation system for anthocyanins utilizing FOS and WP. This study investigates the antioxidative capacity, stability during in vitro digestion, modulation on gut microbiota, and short-chain fatty acids (SCFAs) production of black soybean skin anthocyanins microencapsulated with FOS and WP (anthocyanin-loaded microencapsule particles, ALM). The results demonstrate that ALM exhibits a superior antioxidant capacity compared to free anthocyanins (ANCs) and cyanidin-3-glucoside (C3G). During simulated digestion, ALM exhibits enhanced anthocyanin retention compared with ANC in both gastric and intestinal phases. In comparison with ANC and even non-loaded microcapsules (NLM), in vitro fermentation demonstrates that ALM exhibits the highest gas production and lowered pH, indicating excellent fermentation activity. Furthermore, in comparison with ANC or NLM, ALM exerts a positive influence on the diversity and composition of gut microbiota, with potentially beneficial genera such as Faecalibacterium and Akkermansia exhibiting higher relative abundance. Moreover, ALM stimulates the production of SCFAs, particularly acetic and propionic acids. In conclusion, microencapsulation of anthocyanins with FOS-WP enhances their antioxidative capacity and stability during in vitro digestion. Simultaneously, this microencapsulation illustrates a positive regulatory effect on the intestinal microbiota community and SCFA production, conferring potential health benefits.
科研通智能强力驱动
Strongly Powered by AbleSci AI