Shutdown and compliance decisions in the face of a viral pandemic: A game between governments and citizens

关闭 政府(语言学) 业务 顺从(心理学) 大流行 博弈论 公共经济学 风险分析(工程) 2019年冠状病毒病(COVID-19) 经济 微观经济学 工程类 心理学 医学 社会心理学 疾病 核工程 传染病(医学专业) 哲学 语言学 病理
作者
Puneet Agarwal,Kyle Hunt,Esther San José,Jun Zhuang
出处
期刊:Decision Support Systems [Elsevier]
卷期号:178: 114128-114128 被引量:2
标识
DOI:10.1016/j.dss.2023.114128
摘要

During viral pandemics, governments throughout the world face many complicated and important decisions, such as whether and how to implement a shutdown. In response to shutdown measures that are enacted by governments, citizens are then forced to make decisions regarding whether to comply (and stay home) or violate (and leave their residence for non-essential reasons). To the best of our knowledge, these shutdown and compliance interactions between governments and citizens have received limited attention from the scientific community. To address this gap, we start by developing a single-leader multiple-follower game-theoretic model to study the optimal decisions of the government, who wants to minimize her total cost of implementing a shutdown while balancing societal infection risks, and the public, which wants to minimize their total cost of compliance and individual infection risks. In this initial version of the game, the government selects whether or not to implement a shutdown, while the public decides whether to comply with the government's safety guidelines. We then extend this version of the game by modeling a continuous-choice government, where she can implement a total shutdown, no safety measures at all, or anything between those extremes. We solve both models analytically, resulting in closed-form equilibrium solutions. Using data related to COVID-19, we conduct sensitivity analyses to study how the equilibrium strategies change as the values of the model parameters fluctuate. Our models and analyses offer important and relevant insights into optimal decision making in this setting, and also apply in situations in which infections spread at a rapid rate but may not cause severe illness, such as the case of the Omicron variant of COVID-19. In these scenarios, the models recommend that the government does not implement a shutdown, and instead encourages the public to follow safety measures to avoid infections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忽忽发布了新的文献求助10
1秒前
1秒前
LYL发布了新的文献求助10
1秒前
2秒前
2秒前
4秒前
Aguo发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
研友_Z1WkgL发布了新的文献求助10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
嗯哼应助科研通管家采纳,获得20
7秒前
思源应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得30
8秒前
彭映梦发布了新的文献求助10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
kaka发布了新的文献求助10
8秒前
ucas应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
嗯哼应助科研通管家采纳,获得20
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
无名老大应助科研通管家采纳,获得30
8秒前
不想洗碗发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
科目三应助木兮采纳,获得10
10秒前
GEZHA完成签到,获得积分10
10秒前
欧忒耳佩发布了新的文献求助10
12秒前
Hello应助melody采纳,获得10
12秒前
13秒前
刘刘发布了新的文献求助30
13秒前
自信乐菱完成签到,获得积分20
13秒前
XXQ发布了新的文献求助10
13秒前
14秒前
自由的凌雪完成签到,获得积分10
14秒前
田様应助种地的迎曼采纳,获得10
14秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Machine Learning in Chemistry 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3386656
求助须知:如何正确求助?哪些是违规求助? 2999737
关于积分的说明 8786347
捐赠科研通 2685441
什么是DOI,文献DOI怎么找? 1470991
科研通“疑难数据库(出版商)”最低求助积分说明 680096
邀请新用户注册赠送积分活动 672679