MoCG: Modality Characteristics-Guided Semantic Segmentation in Multimodal Remote Sensing Images

计算机科学 模态(人机交互) 分割 人工智能 特征(语言学) 稳健性(进化) 特征提取 模式识别(心理学) 语义鸿沟 计算机视觉 图像(数学) 图像检索 语言学 生物化学 基因 哲学 化学
作者
Shengyu Xiao,Peijin Wang,Wenhui Diao,Xuee Rong,Xuexue Li,Kun Fu,Xian Sun
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:3
标识
DOI:10.1109/tgrs.2023.3334471
摘要

The rapid development of satellite platforms has yielded copious and diverse multi-source data for earth observation, greatly facilitating the growth of multimodal semantic segmentation (MSS) in remote sensing. However, MSS also suffers from numerous challenges: 1) Existing inherent defects in each modality due to the different imaging mechanisms. 2) Insufficient exploration of the intrinsic characteristics of modalities. 3) The existence of the huge semantic gap between heterogeneous data causes difficulties in feature fusion. The inability to effectively utilize the rich and diverse information provided by each modality and ignorance of the heterogeneity between modalities will hinder the feature enhancement, and further significantly impacts the semantic segmentation accuracy. Furthermore, neglecting the huge gap makes feature fusion challenging. In this study, we introduce a novel framework for multimodal semantic segmentation that effectively mitigates the aforementioned problems. Our approach employs a pseudo-siamese structure for feature extraction. Specifically, we propose a simple yet effective geometric topology structure modeling (GTSM) module to extract geometric relationships and texture information from optical data. Additionally, we present a modality intrinsic noise suppression (MINS) module to fully exploit radiation information and alleviate the effects of unique geometric distortions for SAR. Furthermore, we present an adaptive multimodal feature fusion (AMFF) module for fully fusing different modality features. Extensive experiments on both WHU-OPT-SAR and DFC23 datasets validate the robustness and effectiveness of the proposed Modality Characteristics-Guided Semantic Segmentation (MoCG) network compared to other state-of-the-art semantic segmentation methods, including multimodal and single-modal approaches. Our approach achieves the best performance on both datasets, resulting in mIoU/OA gains 69.1%/87.5% on WHU-OPT-SAR and 86.7%/97.3% on DFC23.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
六月发布了新的文献求助10
5秒前
震动的友琴完成签到,获得积分10
5秒前
5秒前
YwT发布了新的文献求助10
5秒前
dxy发布了新的文献求助10
7秒前
7秒前
carbon-dots发布了新的文献求助10
11秒前
12秒前
上官若男应助玖梦采纳,获得10
12秒前
13秒前
feng完成签到,获得积分10
15秒前
16秒前
Lee发布了新的文献求助10
17秒前
17秒前
Singularity发布了新的文献求助10
20秒前
22秒前
树池发布了新的文献求助10
23秒前
彭于晏应助7777采纳,获得10
24秒前
李存发布了新的文献求助10
25秒前
dxy完成签到,获得积分10
26秒前
26秒前
ding应助咸鱼爱喝汤采纳,获得10
26秒前
早点毕业完成签到 ,获得积分10
28秒前
30秒前
星星关注了科研通微信公众号
30秒前
树池完成签到,获得积分10
30秒前
阔达的凡发布了新的文献求助10
32秒前
32秒前
zhouchen发布了新的文献求助10
35秒前
肌肉干细胞完成签到,获得积分10
35秒前
Singularity发布了新的文献求助20
35秒前
科研通AI2S应助李存采纳,获得10
35秒前
大个应助pjs采纳,获得10
35秒前
阔达的凡完成签到,获得积分10
38秒前
张博完成签到 ,获得积分10
38秒前
NexusExplorer应助木子采纳,获得10
38秒前
39秒前
酷波er应助搞怪的流沙采纳,获得10
44秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139002
求助须知:如何正确求助?哪些是违规求助? 2789909
关于积分的说明 7793227
捐赠科研通 2446337
什么是DOI,文献DOI怎么找? 1301061
科研通“疑难数据库(出版商)”最低求助积分说明 626087
版权声明 601096