闪烁体
材料科学
卤化物
X射线
探测器
光学
金属
纳米技术
物理
冶金
化学
无机化学
作者
Xiuwen Xu,Yue‐Min Xie,Huaiyao Shi,Yongquan Wang,Xianjun Zhu,Bingxiang Li,Shujuan Liu,Bing Chen,Qiang Zhao
标识
DOI:10.1002/adma.202303738
摘要
The ever-growing need to inspect matter with hyperfine structures requires a revolution in current scintillation detectors, and the innovation of scintillators is revived with luminescent metal halides entering the scene. Notably, for any scintillator, two fundamental issues arise: Which kind of material is suitable and in what form should the material exist? The answer to the former question involves the sequence of certain atoms into specific crystal structures that facilitate the conversion of X-ray into light, whereas the answer to the latter involves assembling these crystallites into particular material forms that can guide light propagation toward its corresponding pixel detector. Despite their equal importance, efforts are overwhelmingly devoted to improving the X-ray-to-light conversion, while the material-form-associated light propagation, which determines the optical signal collected for X-ray imaging, is largely overlooked. This perspective critically correlates the reported spatial resolution with the light-propagation behavior in each form of metal halides, combing the designing rules for their future development.
科研通智能强力驱动
Strongly Powered by AbleSci AI