Z-number based neural network structured inference system

计算机科学 人工神经网络 推论 人工智能 机器学习
作者
R. A. Aliev,M. B. Babanli,B. G. Guirimov
出处
期刊:Information Sciences [Elsevier BV]
卷期号:: 120341-120341
标识
DOI:10.1016/j.ins.2024.120341
摘要

Z-number based Neural Network structured Inference System (ZNIS) with rule-base consisting of linguistic Z-terms trainable with Differential Evolution with Constraints (DEC) optimization algorithm is suggested. The inference mechanism of the multi-layered ZNIS consists of a fuzzifier, fuzzy rule base, inference engine, and output processor. Due to the use of extended fuzzy terms, each processing layer implements appropriate extended fuzzy operations, including computation of fuzzy valued rule firing strengths, fuzzy Level-2 aggregate outputs, and two consecutive Center of Gravity (COG) defuzzification procedures. The experiments with different versions of ZNIS have demonstrated that it is a universal modeling tool suitable for dealing with both approximate reasoning and functional mapping tasks. Random experiments on benchmark examples (among which are simple functional mapping, Parkinson disease, and non-linear system identification) have shown that ZNIS performance is equivalent to or better than FLS Type 2 and far superior to FLS Type 1, showing on average 2–3 times lower MSE. Along with this, the main advantages of ZNIS over other inference systems are better semantic expressing power, higher degree of perception and interpretability of the linguistic rules by humans, and a higher confidence in the reliability of achieved decision due to the transparency of the underlying decision-making mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyhyhyhy发布了新的文献求助10
1秒前
wrr完成签到,获得积分10
1秒前
何hyy完成签到 ,获得积分10
3秒前
寒染雾发布了新的文献求助10
3秒前
4秒前
4秒前
852应助美丽星期五采纳,获得10
5秒前
少爷发布了新的文献求助10
5秒前
赘婿应助hyhyhyhy采纳,获得10
6秒前
8秒前
lyx发布了新的文献求助10
8秒前
奥特超曼应助桃源theshy采纳,获得10
8秒前
风是淡淡的云完成签到 ,获得积分10
9秒前
nachwyz完成签到,获得积分10
9秒前
10秒前
张雯思发布了新的文献求助10
12秒前
13秒前
14秒前
惠惠不会完成签到,获得积分10
15秒前
英俊的铭应助大大怪采纳,获得10
15秒前
16秒前
mxm12138发布了新的文献求助10
17秒前
18秒前
qiao完成签到 ,获得积分10
18秒前
叶心发布了新的文献求助10
18秒前
18秒前
小白白完成签到,获得积分10
21秒前
22秒前
23秒前
24秒前
汉堡包应助无情平松采纳,获得10
25秒前
FashionBoy应助mxm12138采纳,获得30
25秒前
去为我我完成签到,获得积分10
27秒前
27秒前
鬲木发布了新的文献求助10
27秒前
28秒前
siren完成签到,获得积分10
29秒前
本是个江湖散人完成签到,获得积分10
32秒前
思源应助鬲木采纳,获得10
32秒前
无情平松完成签到,获得积分10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989660
求助须知:如何正确求助?哪些是违规求助? 3531826
关于积分的说明 11255082
捐赠科研通 3270447
什么是DOI,文献DOI怎么找? 1804981
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176