Z-number based neural network structured inference system

计算机科学 人工神经网络 推论 人工智能 机器学习
作者
R. A. Aliev,M. B. Babanli,B. G. Guirimov
出处
期刊:Information Sciences [Elsevier]
卷期号:: 120341-120341
标识
DOI:10.1016/j.ins.2024.120341
摘要

Z-number based Neural Network structured Inference System (ZNIS) with rule-base consisting of linguistic Z-terms trainable with Differential Evolution with Constraints (DEC) optimization algorithm is suggested. The inference mechanism of the multi-layered ZNIS consists of a fuzzifier, fuzzy rule base, inference engine, and output processor. Due to the use of extended fuzzy terms, each processing layer implements appropriate extended fuzzy operations, including computation of fuzzy valued rule firing strengths, fuzzy Level-2 aggregate outputs, and two consecutive Center of Gravity (COG) defuzzification procedures. The experiments with different versions of ZNIS have demonstrated that it is a universal modeling tool suitable for dealing with both approximate reasoning and functional mapping tasks. Random experiments on benchmark examples (among which are simple functional mapping, Parkinson disease, and non-linear system identification) have shown that ZNIS performance is equivalent to or better than FLS Type 2 and far superior to FLS Type 1, showing on average 2–3 times lower MSE. Along with this, the main advantages of ZNIS over other inference systems are better semantic expressing power, higher degree of perception and interpretability of the linguistic rules by humans, and a higher confidence in the reliability of achieved decision due to the transparency of the underlying decision-making mechanism.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wenqin发布了新的文献求助30
1秒前
1秒前
孙靖博发布了新的文献求助10
2秒前
科研通AI6.1应助川川采纳,获得10
2秒前
3秒前
BZPL完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
马茹发布了新的文献求助10
3秒前
感叹完成签到 ,获得积分10
3秒前
小马甲应助626采纳,获得10
5秒前
5秒前
渔家傲完成签到 ,获得积分10
5秒前
WXR0721发布了新的文献求助30
5秒前
Hello应助cc采纳,获得10
5秒前
量子星尘发布了新的文献求助10
7秒前
今后应助安静台灯采纳,获得10
7秒前
8秒前
8秒前
含蓄锦程发布了新的文献求助20
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
sanlunainiu发布了新的文献求助50
8秒前
8秒前
搞怪的网络关注了科研通微信公众号
9秒前
9秒前
科目三应助科研通管家采纳,获得10
9秒前
AN应助科研通管家采纳,获得30
9秒前
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
9秒前
asdfgjjul完成签到,获得积分10
9秒前
DTOU应助科研通管家采纳,获得10
9秒前
BowieHuang应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
思源应助科研通管家采纳,获得30
10秒前
AN应助科研通管家采纳,获得30
10秒前
DTOU应助科研通管家采纳,获得10
10秒前
HIMINNN发布了新的文献求助10
10秒前
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5787048
求助须知:如何正确求助?哪些是违规求助? 5697004
关于积分的说明 15471171
捐赠科研通 4915690
什么是DOI,文献DOI怎么找? 2645870
邀请新用户注册赠送积分活动 1593553
关于科研通互助平台的介绍 1547896