异质结
钙钛矿(结构)
材料科学
光电子学
能量转换效率
图层(电子)
偶极子
光伏系统
纳米技术
结晶学
化学
生态学
有机化学
生物
作者
Xinyuan Zang,Shaobing Xiong,Jiang Sheng,Di Li,Hongbo Wu,Hao Ren,Aiping Cao,Bo Li,Zaifei Ma,Jinde Chen,Liming Ding,Jianxin Tang,Zhenrong Sun,Junhao Chu,Qinye Bao
标识
DOI:10.1002/adma.202309991
摘要
Abstract Constructing 3D/2D perovskite heterojunction is a promising approach to integrate the benefits of high efficiency and superior stability in perovskite solar cells (PSCs). However, in contrast to n‐i‐p architectural PSCs, the p‐i‐n PSCs with 3D/2D heterojunction have serious limitations in achieving high‐performance as they suffer from a large energetic mismatch and electron extraction energy barrier from a 3D perovskite layer to a 2D perovskite layer, and serious nonradiative recombination at the heterojunction. Here a strategy of incorporating a thin passivating dipole layer (PDL) onto 3D perovskite and then depositing 2D perovskite without dissolving the underlying layer to form an efficient 3D/PDL/2D heterojunction is developed. It is revealed that PDL regulates the energy level alignment with the appearance of interfacial dipole and strongly interacts with 3D perovskite through covalent bonds, which eliminate the energetic mismatch, reduce the surface defects, suppress the nonradiative recombination, and thus accelerate the charge extraction at such electron‐selective contact. As a result, it is reported that the 3D/PDL/2D junction p‐i‐n PSCs present a power conversion efficiency of 24.85% with robust stability, which is comparable to the state‐of‐the‐art efficiency of the 3D/2D junction n‐i‐p devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI