亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning-based clinical-radiomics nomogram for preoperative prediction of lymph node metastasis in patients with rectal cancer: a two-center study

列线图 医学 接收机工作特性 放射科 结直肠癌 百分位 逻辑回归 无线电技术 豪斯多夫距离 阶段(地层学) 癌症 人工智能 肿瘤科 内科学 计算机科学 统计 数学 古生物学 生物
作者
Shiyu Ma,Haidi Lu,Guodong Jing,Zhihui Li,Qianwen Zhang,Xiaolu Ma,Fangying Chen,Chengwei Shao,Yong Lu,Hao Wang,Fu Shen
出处
期刊:Frontiers in Medicine [Frontiers Media SA]
卷期号:10 被引量:14
标识
DOI:10.3389/fmed.2023.1276672
摘要

Precise preoperative evaluation of lymph node metastasis (LNM) is crucial for ensuring effective treatment for rectal cancer (RC). This research aims to develop a clinical-radiomics nomogram based on deep learning techniques, preoperative magnetic resonance imaging (MRI) and clinical characteristics, enabling the accurate prediction of LNM in RC.Between January 2017 and May 2023, a total of 519 rectal cancer cases confirmed by pathological examination were retrospectively recruited from two tertiary hospitals. A total of 253 consecutive individuals were selected from Center I to create an automated MRI segmentation technique utilizing deep learning algorithms. The performance of the model was evaluated using the dice similarity coefficient (DSC), the 95th percentile Hausdorff distance (HD95), and the average surface distance (ASD). Subsequently, two external validation cohorts were established: one comprising 178 patients from center I (EVC1) and another consisting of 88 patients from center II (EVC2). The automatic segmentation provided radiomics features, which were then used to create a Radscore. A predictive nomogram integrating the Radscore and clinical parameters was constructed using multivariate logistic regression. Receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA) were employed to evaluate the discrimination capabilities of the Radscore, nomogram, and subjective evaluation model, respectively.The mean DSC, HD95 and ASD were 0.857 ± 0.041, 2.186 ± 0.956, and 0.562 ± 0.194 mm, respectively. The nomogram, which incorporates MR T-stage, CEA, CA19-9, and Radscore, exhibited a higher area under the ROC curve (AUC) compared to the Radscore and subjective evaluation in the training set (0.921 vs. 0.903 vs. 0.662). Similarly, in both external validation sets, the nomogram demonstrated a higher AUC than the Radscore and subjective evaluation (0.908 vs. 0.735 vs. 0.640, and 0.884 vs. 0.802 vs. 0.734).The application of the deep learning method enables efficient automatic segmentation. The clinical-radiomics nomogram, utilizing preoperative MRI and automatic segmentation, proves to be an accurate method for assessing LNM in RC. This approach has the potential to enhance clinical decision-making and improve patient care.Research registry, identifier 9158, https://www.researchregistry.com/browse-the-registry#home/registrationdetails/648e813efffa4e0028022796/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
13秒前
19秒前
搜集达人应助科研通管家采纳,获得10
50秒前
MchemG应助科研通管家采纳,获得10
50秒前
Huzhu应助科研通管家采纳,获得10
50秒前
MchemG应助科研通管家采纳,获得10
50秒前
55秒前
58秒前
1分钟前
1分钟前
结实的谷芹完成签到,获得积分10
1分钟前
王硕小傻狗完成签到,获得积分10
1分钟前
熊22完成签到,获得积分10
1分钟前
1分钟前
2分钟前
清秀尔竹完成签到 ,获得积分10
2分钟前
熊22发布了新的文献求助10
2分钟前
感谢发布了新的文献求助10
2分钟前
草木完成签到 ,获得积分10
2分钟前
ll61发布了新的文献求助10
2分钟前
2分钟前
Wei发布了新的文献求助10
2分钟前
毛毛完成签到,获得积分10
2分钟前
天天快乐应助左白易采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
朱育攀给朱育攀的求助进行了留言
3分钟前
3分钟前
左白易发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
左白易完成签到,获得积分10
3分钟前
xxxxx炒菜完成签到,获得积分10
3分钟前
平常的若雁完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488594
求助须知:如何正确求助?哪些是违规求助? 4587405
关于积分的说明 14413853
捐赠科研通 4518798
什么是DOI,文献DOI怎么找? 2476092
邀请新用户注册赠送积分活动 1461552
关于科研通互助平台的介绍 1434505