DMF-Net: A Dual-Encoding Multi-Scale Fusion Network for Pavement Crack Detection

计算机科学 卷积神经网络 人工智能 分割 特征学习 深度学习 编码(内存) 变压器 特征(语言学) 特征提取 模式识别(心理学) 工程类 电压 语言学 电气工程 哲学
作者
Suli Bai,Lei Yang,Yanhong Liu,Hongnian Yu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (6): 5981-5996 被引量:13
标识
DOI:10.1109/tits.2023.3331769
摘要

Currently, cracks are the most common defect in pavement diseases. Long-term non-maintenance can lead to crack lengthening and expansion, causing serious traffic accidents, as well as shortening the service life of pavement cracks. Therefore, it is of utmost importance to maintain cracks at an early stage. Due to the effect of some challenging factors, such as various shape information of the cracks, complex textured backgrounds, light shadows, similar texture objects, micro cracks and other factors, accurate crack detection still faces a certain challenges. To solve the above problems, a dual-encoding multi-scale fusion network based on the combination of convolutional neural network (CNN) and transformer network is proposed, named DMF-Net. To obtain stronger feature representations, a dual-encoding path is built to acquire global context features and local detail information simultaneously, where global context features are extracted based on the transformer branch, and the local detail features are extracted based on the CNN branch to detect tiny details of the cracks. Meanwhile, an interactive attention learning (IAL) module is introduced to effectively fuse the global features from the transformer branch and the local detail information from the CNN branch, achieving mutual communication and learning of different feature information. In addition, to enrich the feature representation ability, an attention-based feature enhancement (AFE) module is introduced to acquire more global contexts. Furthermore, faced with the crack detection task with class imbalance issue, a triple attention module (TAM) is built to emphasize the micro cracks. Finally, in the segmentation prediction stage, the deep supervision mechanism is also introduced to accelerate the convergence speed of the model, and serve effective multi-scale feature fusion. Compared with the current mainstream segmentation models, excellent performance has been obtained, which could provide a feasible scheme for the early maintenance of pavement cracks. The source code about proposed DMF-Net is available at https://github.com/Bsl1/DMFNet.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助光亮海秋采纳,获得30
2秒前
neversay4ever发布了新的文献求助10
3秒前
mm发布了新的文献求助10
3秒前
慕青应助朴实的紫采纳,获得10
4秒前
5秒前
6秒前
科目三应助5448489489采纳,获得10
6秒前
7秒前
单身的大娘完成签到,获得积分10
8秒前
9秒前
赘婿应助aaaaa采纳,获得10
9秒前
立里发布了新的文献求助10
9秒前
圈圈发布了新的文献求助20
11秒前
WYQ发布了新的文献求助10
12秒前
贤惠的老黑完成签到 ,获得积分10
12秒前
12秒前
朴素八宝粥完成签到,获得积分10
12秒前
澎鱼盐发布了新的文献求助10
13秒前
wlscj应助琼0217采纳,获得20
13秒前
许子健发布了新的文献求助10
14秒前
blue完成签到,获得积分10
14秒前
14秒前
丘比特应助glycine采纳,获得10
15秒前
CipherSage应助我是一只猫采纳,获得10
15秒前
无花果应助cbz采纳,获得10
16秒前
yudabaoer发布了新的文献求助10
16秒前
安静代萱完成签到 ,获得积分10
16秒前
华仔应助张中山采纳,获得10
17秒前
泡芙完成签到 ,获得积分10
18秒前
18秒前
orixero应助姚友进采纳,获得10
18秒前
不倦发布了新的文献求助10
20秒前
研晓晓发布了新的文献求助10
20秒前
21秒前
踏实天亦完成签到,获得积分10
21秒前
xunuo完成签到,获得积分10
23秒前
24秒前
xuexuezi关注了科研通微信公众号
24秒前
求助者发布了新的文献求助30
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289591
求助须知:如何正确求助?哪些是违规求助? 4441121
关于积分的说明 13826643
捐赠科研通 4323520
什么是DOI,文献DOI怎么找? 2373234
邀请新用户注册赠送积分活动 1368631
关于科研通互助平台的介绍 1332534