DMF-Net: A Dual-Encoding Multi-Scale Fusion Network for Pavement Crack Detection

计算机科学 卷积神经网络 人工智能 分割 特征学习 深度学习 编码(内存) 变压器 特征(语言学) 特征提取 模式识别(心理学) 工程类 电压 语言学 电气工程 哲学
作者
Suli Bai,Lei Yang,Yanhong Liu,Hongnian Yu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (6): 5981-5996 被引量:13
标识
DOI:10.1109/tits.2023.3331769
摘要

Currently, cracks are the most common defect in pavement diseases. Long-term non-maintenance can lead to crack lengthening and expansion, causing serious traffic accidents, as well as shortening the service life of pavement cracks. Therefore, it is of utmost importance to maintain cracks at an early stage. Due to the effect of some challenging factors, such as various shape information of the cracks, complex textured backgrounds, light shadows, similar texture objects, micro cracks and other factors, accurate crack detection still faces a certain challenges. To solve the above problems, a dual-encoding multi-scale fusion network based on the combination of convolutional neural network (CNN) and transformer network is proposed, named DMF-Net. To obtain stronger feature representations, a dual-encoding path is built to acquire global context features and local detail information simultaneously, where global context features are extracted based on the transformer branch, and the local detail features are extracted based on the CNN branch to detect tiny details of the cracks. Meanwhile, an interactive attention learning (IAL) module is introduced to effectively fuse the global features from the transformer branch and the local detail information from the CNN branch, achieving mutual communication and learning of different feature information. In addition, to enrich the feature representation ability, an attention-based feature enhancement (AFE) module is introduced to acquire more global contexts. Furthermore, faced with the crack detection task with class imbalance issue, a triple attention module (TAM) is built to emphasize the micro cracks. Finally, in the segmentation prediction stage, the deep supervision mechanism is also introduced to accelerate the convergence speed of the model, and serve effective multi-scale feature fusion. Compared with the current mainstream segmentation models, excellent performance has been obtained, which could provide a feasible scheme for the early maintenance of pavement cracks. The source code about proposed DMF-Net is available at https://github.com/Bsl1/DMFNet.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huiliang完成签到,获得积分10
刚刚
llmin发布了新的文献求助10
2秒前
缥缈老九发布了新的文献求助10
2秒前
我的keyantong完成签到,获得积分10
3秒前
王超发布了新的文献求助10
3秒前
那时的苹果完成签到,获得积分10
3秒前
3秒前
CipherSage应助张豪杰采纳,获得10
4秒前
chaohuiwang发布了新的文献求助20
5秒前
wise111发布了新的文献求助10
5秒前
Richard发布了新的文献求助10
5秒前
置身事内发布了新的文献求助10
6秒前
幽默的凡完成签到 ,获得积分10
8秒前
功夫梦完成签到,获得积分10
8秒前
8秒前
淡然绝山发布了新的文献求助10
10秒前
颠覆乾坤完成签到,获得积分10
10秒前
11秒前
rita_sun1969完成签到,获得积分10
11秒前
一只菜鸟完成签到 ,获得积分10
12秒前
我是老大应助暮然采纳,获得10
13秒前
13秒前
llmin完成签到,获得积分10
15秒前
16秒前
17秒前
慕青应助hiullin采纳,获得10
18秒前
18秒前
qh0305发布了新的文献求助10
18秒前
CipherSage应助何照人采纳,获得10
19秒前
stt发布了新的文献求助30
19秒前
书生完成签到,获得积分10
21秒前
王超完成签到,获得积分10
21秒前
孙雁哝发布了新的文献求助10
21秒前
直率无春完成签到,获得积分10
22秒前
王文静完成签到,获得积分10
22秒前
66完成签到,获得积分10
22秒前
Wcc发布了新的文献求助10
23秒前
潇洒一曲完成签到,获得积分10
24秒前
25秒前
lius完成签到,获得积分10
26秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962722
求助须知:如何正确求助?哪些是违规求助? 3508707
关于积分的说明 11142362
捐赠科研通 3241478
什么是DOI,文献DOI怎么找? 1791555
邀请新用户注册赠送积分活动 872968
科研通“疑难数据库(出版商)”最低求助积分说明 803517