亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DMF-Net: A Dual-Encoding Multi-Scale Fusion Network for Pavement Crack Detection

计算机科学 卷积神经网络 人工智能 分割 特征学习 深度学习 编码(内存) 变压器 特征(语言学) 特征提取 模式识别(心理学) 工程类 电压 语言学 电气工程 哲学
作者
Suli Bai,Lei Yang,Yanhong Liu,Hongnian Yu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (6): 5981-5996 被引量:33
标识
DOI:10.1109/tits.2023.3331769
摘要

Currently, cracks are the most common defect in pavement diseases. Long-term non-maintenance can lead to crack lengthening and expansion, causing serious traffic accidents, as well as shortening the service life of pavement cracks. Therefore, it is of utmost importance to maintain cracks at an early stage. Due to the effect of some challenging factors, such as various shape information of the cracks, complex textured backgrounds, light shadows, similar texture objects, micro cracks and other factors, accurate crack detection still faces a certain challenges. To solve the above problems, a dual-encoding multi-scale fusion network based on the combination of convolutional neural network (CNN) and transformer network is proposed, named DMF-Net. To obtain stronger feature representations, a dual-encoding path is built to acquire global context features and local detail information simultaneously, where global context features are extracted based on the transformer branch, and the local detail features are extracted based on the CNN branch to detect tiny details of the cracks. Meanwhile, an interactive attention learning (IAL) module is introduced to effectively fuse the global features from the transformer branch and the local detail information from the CNN branch, achieving mutual communication and learning of different feature information. In addition, to enrich the feature representation ability, an attention-based feature enhancement (AFE) module is introduced to acquire more global contexts. Furthermore, faced with the crack detection task with class imbalance issue, a triple attention module (TAM) is built to emphasize the micro cracks. Finally, in the segmentation prediction stage, the deep supervision mechanism is also introduced to accelerate the convergence speed of the model, and serve effective multi-scale feature fusion. Compared with the current mainstream segmentation models, excellent performance has been obtained, which could provide a feasible scheme ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助Mario采纳,获得10
5秒前
9秒前
初始发布了新的文献求助10
16秒前
如意蚂蚁完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
木昜发布了新的文献求助10
24秒前
27秒前
32秒前
36秒前
爆米花应助初始采纳,获得10
41秒前
qq完成签到 ,获得积分10
42秒前
53秒前
香蕉觅云应助hb采纳,获得10
55秒前
科研通AI6.1应助小祝采纳,获得10
1分钟前
1分钟前
1分钟前
shou完成签到 ,获得积分10
1分钟前
whardon发布了新的文献求助10
1分钟前
1分钟前
whardon完成签到,获得积分10
1分钟前
twk完成签到,获得积分10
1分钟前
1分钟前
开心惜梦完成签到,获得积分10
1分钟前
Mario发布了新的文献求助10
1分钟前
1分钟前
日光倾城完成签到 ,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Mario完成签到,获得积分10
2分钟前
万能图书馆应助LucyMartinez采纳,获得10
2分钟前
2分钟前
2分钟前
LucyMartinez发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Magic麦发布了新的文献求助10
2分钟前
2分钟前
庾稀给庾稀的求助进行了留言
2分钟前
hb发布了新的文献求助10
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746752
求助须知:如何正确求助?哪些是违规求助? 5438610
关于积分的说明 15355852
捐赠科研通 4886774
什么是DOI,文献DOI怎么找? 2627426
邀请新用户注册赠送积分活动 1575893
关于科研通互助平台的介绍 1532627