DMF-Net: A Dual-Encoding Multi-Scale Fusion Network for Pavement Crack Detection

计算机科学 卷积神经网络 人工智能 分割 特征学习 深度学习 编码(内存) 变压器 特征(语言学) 特征提取 模式识别(心理学) 工程类 电压 语言学 电气工程 哲学
作者
Suli Bai,Lei Yang,Yanhong Liu,Hongnian Yu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:3
标识
DOI:10.1109/tits.2023.3331769
摘要

Currently, cracks are the most common defect in pavement diseases. Long-term non-maintenance can lead to crack lengthening and expansion, causing serious traffic accidents, as well as shortening the service life of pavement cracks. Therefore, it is of utmost importance to maintain cracks at an early stage. Due to the effect of some challenging factors, such as various shape information of the cracks, complex textured backgrounds, light shadows, similar texture objects, micro cracks and other factors, accurate crack detection still faces a certain challenges. To solve the above problems, a dual-encoding multi-scale fusion network based on the combination of convolutional neural network (CNN) and transformer network is proposed, named DMF-Net. To obtain stronger feature representations, a dual-encoding path is built to acquire global context features and local detail information simultaneously, where global context features are extracted based on the transformer branch, and the local detail features are extracted based on the CNN branch to detect tiny details of the cracks. Meanwhile, an interactive attention learning (IAL) module is introduced to effectively fuse the global features from the transformer branch and the local detail information from the CNN branch, achieving mutual communication and learning of different feature information. In addition, to enrich the feature representation ability, an attention-based feature enhancement (AFE) module is introduced to acquire more global contexts. Furthermore, faced with the crack detection task with class imbalance issue, a triple attention module (TAM) is built to emphasize the micro cracks. Finally, in the segmentation prediction stage, the deep supervision mechanism is also introduced to accelerate the convergence speed of the model, and serve effective multi-scale feature fusion. Compared with the current mainstream segmentation models, excellent performance has been obtained, which could provide a feasible scheme for the early maintenance of pavement cracks. The source code about proposed DMF-Net is available at https://github.com/Bsl1/DMFNet.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ABS发布了新的文献求助10
刚刚
科研通AI2S应助fifteen采纳,获得10
刚刚
3秒前
3秒前
NA发布了新的文献求助10
3秒前
LMH完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
6秒前
星辰大海应助yyauthor采纳,获得10
8秒前
Dyson发布了新的文献求助10
9秒前
Yummy发布了新的文献求助10
9秒前
lourahan发布了新的文献求助10
10秒前
10秒前
10秒前
星期五发布了新的文献求助100
10秒前
binz完成签到,获得积分10
12秒前
自由完成签到 ,获得积分10
13秒前
14秒前
田様应助恰逢其时而已采纳,获得20
14秒前
lalala发布了新的文献求助10
14秒前
16秒前
难过飞瑶完成签到,获得积分10
18秒前
强哥很强发布了新的文献求助10
19秒前
19秒前
21秒前
666完成签到,获得积分10
21秒前
23秒前
Much完成签到 ,获得积分10
23秒前
23秒前
Quinta发布了新的文献求助10
24秒前
24秒前
wa完成签到 ,获得积分10
25秒前
SciGPT应助松鼠采纳,获得10
26秒前
26秒前
CipherSage应助望舒采纳,获得10
26秒前
26秒前
猫大熊发布了新的文献求助10
26秒前
lalala发布了新的文献求助10
27秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157832
求助须知:如何正确求助?哪些是违规求助? 2809154
关于积分的说明 7880665
捐赠科研通 2467655
什么是DOI,文献DOI怎么找? 1313641
科研通“疑难数据库(出版商)”最低求助积分说明 630467
版权声明 601943