已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DMF-Net: A Dual-Encoding Multi-Scale Fusion Network for Pavement Crack Detection

计算机科学 卷积神经网络 人工智能 分割 特征学习 深度学习 编码(内存) 变压器 特征(语言学) 特征提取 模式识别(心理学) 工程类 电压 语言学 电气工程 哲学
作者
Suli Bai,Lei Yang,Yanhong Liu,Hongnian Yu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (6): 5981-5996 被引量:13
标识
DOI:10.1109/tits.2023.3331769
摘要

Currently, cracks are the most common defect in pavement diseases. Long-term non-maintenance can lead to crack lengthening and expansion, causing serious traffic accidents, as well as shortening the service life of pavement cracks. Therefore, it is of utmost importance to maintain cracks at an early stage. Due to the effect of some challenging factors, such as various shape information of the cracks, complex textured backgrounds, light shadows, similar texture objects, micro cracks and other factors, accurate crack detection still faces a certain challenges. To solve the above problems, a dual-encoding multi-scale fusion network based on the combination of convolutional neural network (CNN) and transformer network is proposed, named DMF-Net. To obtain stronger feature representations, a dual-encoding path is built to acquire global context features and local detail information simultaneously, where global context features are extracted based on the transformer branch, and the local detail features are extracted based on the CNN branch to detect tiny details of the cracks. Meanwhile, an interactive attention learning (IAL) module is introduced to effectively fuse the global features from the transformer branch and the local detail information from the CNN branch, achieving mutual communication and learning of different feature information. In addition, to enrich the feature representation ability, an attention-based feature enhancement (AFE) module is introduced to acquire more global contexts. Furthermore, faced with the crack detection task with class imbalance issue, a triple attention module (TAM) is built to emphasize the micro cracks. Finally, in the segmentation prediction stage, the deep supervision mechanism is also introduced to accelerate the convergence speed of the model, and serve effective multi-scale feature fusion. Compared with the current mainstream segmentation models, excellent performance has been obtained, which could provide a feasible scheme for the early maintenance of pavement cracks. The source code about proposed DMF-Net is available at https://github.com/Bsl1/DMFNet.git.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助今天是周几采纳,获得10
刚刚
传奇3应助于鱼采纳,获得10
3秒前
luckycc完成签到,获得积分10
3秒前
6秒前
共享精神应助子瑜刘采纳,获得10
6秒前
上官若男应助热情的幻丝采纳,获得10
7秒前
sjy完成签到,获得积分10
9秒前
polite完成签到 ,获得积分10
9秒前
闲敲棋子完成签到 ,获得积分10
9秒前
李李完成签到 ,获得积分20
11秒前
小蜜蜂完成签到 ,获得积分10
12秒前
14秒前
15秒前
Charlie完成签到 ,获得积分10
16秒前
竹篱上停蜻蜓完成签到,获得积分20
16秒前
两斤完成签到,获得积分20
18秒前
23秒前
明月朗晴完成签到 ,获得积分10
23秒前
虚拟的元风完成签到 ,获得积分10
24秒前
火速阿百川完成签到,获得积分10
24秒前
liu关闭了liu文献求助
24秒前
不加香菜完成签到 ,获得积分10
25秒前
迅速的凌翠完成签到 ,获得积分10
26秒前
27秒前
李李关注了科研通微信公众号
28秒前
Jelly发布了新的文献求助10
29秒前
wrr发布了新的文献求助10
29秒前
30秒前
BowieHuang应助one采纳,获得30
30秒前
桑葚草莓冰淇淋完成签到 ,获得积分10
31秒前
32秒前
32秒前
32秒前
32秒前
32秒前
32秒前
32秒前
32秒前
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590129
求助须知:如何正确求助?哪些是违规求助? 4674579
关于积分的说明 14794548
捐赠科研通 4630299
什么是DOI,文献DOI怎么找? 2532556
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468571