Explainable AI in radiology: a white paper of the Italian Society of Medical and Interventional Radiology

可解释性 多样性(控制论) 医学 服务(商务) 白皮书 领域(数学) 人工智能 计算机科学 数据科学 业务 政治学 营销 数学 纯数学 法学
作者
Emanuele Neri,Gayanè Aghakhanyan,Marta Zerunian,Nicoletta Gandolfo,Roberto Grassi,Vittorio Miele,Andrea Giovagnoni,Andrea Laghi
出处
期刊:Radiologia Medica [Springer Nature]
卷期号:128 (6): 755-764 被引量:21
标识
DOI:10.1007/s11547-023-01634-5
摘要

Abstract The term Explainable Artificial Intelligence (xAI) groups together the scientific body of knowledge developed while searching for methods to explain the inner logic behind the AI algorithm and the model inference based on knowledge-based interpretability. The xAI is now generally recognized as a core area of AI. A variety of xAI methods currently are available to researchers; nonetheless, the comprehensive classification of the xAI methods is still lacking. In addition, there is no consensus among the researchers with regards to what an explanation exactly is and which are salient properties that must be considered to make it understandable for every end-user. The SIRM introduces an xAI-white paper, which is intended to aid Radiologists, medical practitioners, and scientists in the understanding an emerging field of xAI, the black-box problem behind the success of the AI, the xAI methods to unveil the black-box into a glass-box, the role, and responsibilities of the Radiologists for appropriate use of the AI-technology. Due to the rapidly changing and evolution of AI, a definitive conclusion or solution is far away from being defined. However, one of our greatest responsibilities is to keep up with the change in a critical manner. In fact, ignoring and discrediting the advent of AI a priori will not curb its use but could result in its application without awareness. Therefore, learning and increasing our knowledge about this very important technological change will allow us to put AI at our service and at the service of the patients in a conscious way, pushing this paradigm shift as far as it will benefit us.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ANDRT完成签到,获得积分10
3秒前
4秒前
orixero应助nuomi采纳,获得10
4秒前
Kiling发布了新的文献求助10
5秒前
5秒前
5秒前
7秒前
8秒前
聪明的绮波完成签到,获得积分10
10秒前
儒雅的裘发布了新的文献求助10
10秒前
hongjie_w发布了新的文献求助10
13秒前
我是老大应助Nacy采纳,获得10
14秒前
19秒前
20秒前
科研通AI2S应助可乐采纳,获得10
22秒前
23秒前
KSDalton应助寒冷忆山采纳,获得10
25秒前
fzr706应助yhr采纳,获得10
25秒前
26秒前
JIA发布了新的文献求助10
27秒前
27秒前
30秒前
无私幻枫完成签到,获得积分20
30秒前
longxingbo发布了新的文献求助10
31秒前
lalala发布了新的文献求助10
32秒前
33秒前
无私幻枫发布了新的文献求助10
34秒前
lalalala发布了新的文献求助10
34秒前
35秒前
丘比特应助32采纳,获得10
36秒前
37秒前
38秒前
38秒前
南风完成签到,获得积分10
39秒前
YangMengJing_发布了新的文献求助10
40秒前
wan发布了新的文献求助10
41秒前
我是老大应助Cynthia采纳,获得10
41秒前
Nacy发布了新的文献求助10
41秒前
英俊的铭应助Rian采纳,获得10
42秒前
43秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265155
求助须知:如何正确求助?哪些是违规求助? 2905120
关于积分的说明 8332765
捐赠科研通 2575538
什么是DOI,文献DOI怎么找? 1399868
科研通“疑难数据库(出版商)”最低求助积分说明 654595
邀请新用户注册赠送积分活动 633449