Automated Assessment of Cardiac Systolic Function From Coronary Angiograms With Video-Based Artificial Intelligence Algorithms

射血分数 医学 接收机工作特性 冠状动脉疾病 心脏病学 内科学 优势比 算法 心力衰竭 计算机科学
作者
Robert Avram,Joshua Barrios,Sean Abreau,Cheng Yee Goh,Zeeshan Ahmed,Kevin C. Chung,Derek So,Jeffrey E. Olgin,Geoffrey H. Tison
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:8 (6): 586-586 被引量:14
标识
DOI:10.1001/jamacardio.2023.0968
摘要

Importance Understanding left ventricular ejection fraction (LVEF) during coronary angiography can assist in disease management. Objective To develop an automated approach to predict LVEF from left coronary angiograms. Design, Setting, and Participants This was a cross-sectional study with external validation using patient data from December 12, 2012, to December 31, 2019, from the University of California, San Francisco (UCSF). Data were randomly split into training, development, and test data sets. External validation data were obtained from the University of Ottawa Heart Institute. Included in the analysis were all patients 18 years or older who received a coronary angiogram and transthoracic echocardiogram (TTE) within 3 months before or 1 month after the angiogram. Exposure A video-based deep neural network (DNN) called CathEF was used to discriminate (binary) reduced LVEF (≤40%) and to predict (continuous) LVEF percentage from standard angiogram videos of the left coronary artery. Guided class-discriminative gradient class activation mapping (GradCAM) was applied to visualize pixels in angiograms that contributed most to DNN LVEF prediction. Results A total of 4042 adult angiograms with corresponding TTE LVEF from 3679 UCSF patients were included in the analysis. Mean (SD) patient age was 64.3 (13.3) years, and 2212 patients were male (65%). In the UCSF test data set (n = 813), the video-based DNN discriminated (binary) reduced LVEF (≤40%) with an area under the receiver operating characteristic curve (AUROC) of 0.911 (95% CI, 0.887-0.934); diagnostic odds ratio for reduced LVEF was 22.7 (95% CI, 14.0-37.0). DNN-predicted continuous LVEF had a mean absolute error (MAE) of 8.5% (95% CI, 8.1%-9.0%) compared with TTE LVEF. Although DNN-predicted continuous LVEF differed 5% or less compared with TTE LVEF in 38.0% (309 of 813) of test data set studies, differences greater than 15% were observed in 15.2% (124 of 813). In external validation (n = 776), video-based DNN discriminated (binary) reduced LVEF (≤40%) with an AUROC of 0.906 (95% CI, 0.881-0.931), and DNN-predicted continuous LVEF had an MAE of 7.0% (95% CI, 6.6%-7.4%). Video-based DNN tended to overestimate low LVEFs and underestimate high LVEFs. Video-based DNN performance was consistent across sex, body mass index, low estimated glomerular filtration rate (≤45), presence of acute coronary syndromes, obstructive coronary artery disease, and left ventricular hypertrophy. Conclusion and relevance This cross-sectional study represents an early demonstration of estimating LVEF from standard angiogram videos of the left coronary artery using video-based DNNs. Further research can improve accuracy and reduce the variability of DNNs to maximize their clinical utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
弎夜完成签到,获得积分10
1秒前
miqiqi发布了新的文献求助10
1秒前
1秒前
浮游应助研友_Zb1rln采纳,获得10
2秒前
星辰大海应助Chauncy采纳,获得10
2秒前
2秒前
碧蓝的以亦完成签到,获得积分10
3秒前
完美世界应助CHSLN采纳,获得10
3秒前
123完成签到,获得积分10
3秒前
李虎完成签到 ,获得积分10
3秒前
4秒前
Lucas应助Lucifer采纳,获得100
6秒前
澜生完成签到,获得积分10
6秒前
jimoon完成签到,获得积分20
6秒前
宗剑发布了新的文献求助10
6秒前
wxcool发布了新的文献求助10
6秒前
7秒前
田様应助胡浩采纳,获得10
7秒前
搜集达人应助欣喜的初柔采纳,获得10
7秒前
小二郎应助Ahan采纳,获得10
8秒前
搜集达人应助喜欢秋天xx_y采纳,获得30
9秒前
不倦应助大力的立果采纳,获得10
10秒前
科研通AI6应助音悦台采纳,获得10
10秒前
上官翠花完成签到 ,获得积分10
10秒前
chutong12345完成签到 ,获得积分10
11秒前
原野发布了新的文献求助10
12秒前
12秒前
秋半梦发布了新的文献求助10
12秒前
15秒前
16秒前
16秒前
陀螺完成签到,获得积分10
16秒前
16秒前
16秒前
iknj完成签到,获得积分10
16秒前
18秒前
僵尸吃掉了我的脑子完成签到 ,获得积分10
18秒前
留猪完成签到,获得积分10
19秒前
20秒前
自由的32发布了新的文献求助10
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132185
求助须知:如何正确求助?哪些是违规求助? 4333666
关于积分的说明 13501674
捐赠科研通 4170698
什么是DOI,文献DOI怎么找? 2286593
邀请新用户注册赠送积分活动 1287479
关于科研通互助平台的介绍 1228414