Automated Assessment of Cardiac Systolic Function From Coronary Angiograms With Video-Based Artificial Intelligence Algorithms

射血分数 医学 接收机工作特性 冠状动脉疾病 心脏病学 内科学 优势比 算法 心力衰竭 计算机科学
作者
Robert Avram,Joshua Barrios,Sean Abreau,Cheng Yee Goh,Zeeshan Ahmed,Kevin C. Chung,Derek So,Jeffrey E. Olgin,Geoffrey H. Tison
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:8 (6): 586-586 被引量:14
标识
DOI:10.1001/jamacardio.2023.0968
摘要

Importance Understanding left ventricular ejection fraction (LVEF) during coronary angiography can assist in disease management. Objective To develop an automated approach to predict LVEF from left coronary angiograms. Design, Setting, and Participants This was a cross-sectional study with external validation using patient data from December 12, 2012, to December 31, 2019, from the University of California, San Francisco (UCSF). Data were randomly split into training, development, and test data sets. External validation data were obtained from the University of Ottawa Heart Institute. Included in the analysis were all patients 18 years or older who received a coronary angiogram and transthoracic echocardiogram (TTE) within 3 months before or 1 month after the angiogram. Exposure A video-based deep neural network (DNN) called CathEF was used to discriminate (binary) reduced LVEF (≤40%) and to predict (continuous) LVEF percentage from standard angiogram videos of the left coronary artery. Guided class-discriminative gradient class activation mapping (GradCAM) was applied to visualize pixels in angiograms that contributed most to DNN LVEF prediction. Results A total of 4042 adult angiograms with corresponding TTE LVEF from 3679 UCSF patients were included in the analysis. Mean (SD) patient age was 64.3 (13.3) years, and 2212 patients were male (65%). In the UCSF test data set (n = 813), the video-based DNN discriminated (binary) reduced LVEF (≤40%) with an area under the receiver operating characteristic curve (AUROC) of 0.911 (95% CI, 0.887-0.934); diagnostic odds ratio for reduced LVEF was 22.7 (95% CI, 14.0-37.0). DNN-predicted continuous LVEF had a mean absolute error (MAE) of 8.5% (95% CI, 8.1%-9.0%) compared with TTE LVEF. Although DNN-predicted continuous LVEF differed 5% or less compared with TTE LVEF in 38.0% (309 of 813) of test data set studies, differences greater than 15% were observed in 15.2% (124 of 813). In external validation (n = 776), video-based DNN discriminated (binary) reduced LVEF (≤40%) with an AUROC of 0.906 (95% CI, 0.881-0.931), and DNN-predicted continuous LVEF had an MAE of 7.0% (95% CI, 6.6%-7.4%). Video-based DNN tended to overestimate low LVEFs and underestimate high LVEFs. Video-based DNN performance was consistent across sex, body mass index, low estimated glomerular filtration rate (≤45), presence of acute coronary syndromes, obstructive coronary artery disease, and left ventricular hypertrophy. Conclusion and relevance This cross-sectional study represents an early demonstration of estimating LVEF from standard angiogram videos of the left coronary artery using video-based DNNs. Further research can improve accuracy and reduce the variability of DNNs to maximize their clinical utility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
renovel发布了新的文献求助10
1秒前
喻尔蓝发布了新的文献求助10
2秒前
烟花应助宁羽采纳,获得10
3秒前
拉长的冰海完成签到 ,获得积分10
3秒前
3秒前
XUU发布了新的文献求助10
3秒前
放逐发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
moon_sky完成签到,获得积分10
5秒前
漂亮凌旋完成签到,获得积分10
6秒前
Orange应助Wang_ZiMo采纳,获得10
7秒前
7秒前
8秒前
闲鱼电脑完成签到,获得积分10
8秒前
柒_l发布了新的文献求助10
9秒前
9秒前
10秒前
顾矜应助科研小废物采纳,获得10
10秒前
酷波er应助Karol采纳,获得10
11秒前
心随海涵完成签到,获得积分10
12秒前
科研通AI6.1应助萌only采纳,获得50
12秒前
13秒前
oleskarabach发布了新的文献求助10
13秒前
炙热成仁发布了新的文献求助10
14秒前
桔梗完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
科目三应助caoyy采纳,获得10
17秒前
量子星尘发布了新的文献求助10
18秒前
Hello应助高高天抒采纳,获得10
19秒前
20秒前
20秒前
桔梗发布了新的文献求助10
21秒前
21秒前
发发完成签到 ,获得积分10
21秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771522
求助须知:如何正确求助?哪些是违规求助? 5592341
关于积分的说明 15427808
捐赠科研通 4904883
什么是DOI,文献DOI怎么找? 2639061
邀请新用户注册赠送积分活动 1586832
关于科研通互助平台的介绍 1541833