Automated Assessment of Cardiac Systolic Function From Coronary Angiograms With Video-Based Artificial Intelligence Algorithms

射血分数 医学 接收机工作特性 冠状动脉疾病 心脏病学 内科学 优势比 算法 心力衰竭 计算机科学
作者
Robert Avram,Joshua Barrios,Sean Abreau,Cheng Yee Goh,Zeeshan Ahmed,Kevin C. Chung,Derek So,Jeffrey E. Olgin,Geoffrey H. Tison
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:8 (6): 586-586 被引量:14
标识
DOI:10.1001/jamacardio.2023.0968
摘要

Importance Understanding left ventricular ejection fraction (LVEF) during coronary angiography can assist in disease management. Objective To develop an automated approach to predict LVEF from left coronary angiograms. Design, Setting, and Participants This was a cross-sectional study with external validation using patient data from December 12, 2012, to December 31, 2019, from the University of California, San Francisco (UCSF). Data were randomly split into training, development, and test data sets. External validation data were obtained from the University of Ottawa Heart Institute. Included in the analysis were all patients 18 years or older who received a coronary angiogram and transthoracic echocardiogram (TTE) within 3 months before or 1 month after the angiogram. Exposure A video-based deep neural network (DNN) called CathEF was used to discriminate (binary) reduced LVEF (≤40%) and to predict (continuous) LVEF percentage from standard angiogram videos of the left coronary artery. Guided class-discriminative gradient class activation mapping (GradCAM) was applied to visualize pixels in angiograms that contributed most to DNN LVEF prediction. Results A total of 4042 adult angiograms with corresponding TTE LVEF from 3679 UCSF patients were included in the analysis. Mean (SD) patient age was 64.3 (13.3) years, and 2212 patients were male (65%). In the UCSF test data set (n = 813), the video-based DNN discriminated (binary) reduced LVEF (≤40%) with an area under the receiver operating characteristic curve (AUROC) of 0.911 (95% CI, 0.887-0.934); diagnostic odds ratio for reduced LVEF was 22.7 (95% CI, 14.0-37.0). DNN-predicted continuous LVEF had a mean absolute error (MAE) of 8.5% (95% CI, 8.1%-9.0%) compared with TTE LVEF. Although DNN-predicted continuous LVEF differed 5% or less compared with TTE LVEF in 38.0% (309 of 813) of test data set studies, differences greater than 15% were observed in 15.2% (124 of 813). In external validation (n = 776), video-based DNN discriminated (binary) reduced LVEF (≤40%) with an AUROC of 0.906 (95% CI, 0.881-0.931), and DNN-predicted continuous LVEF had an MAE of 7.0% (95% CI, 6.6%-7.4%). Video-based DNN tended to overestimate low LVEFs and underestimate high LVEFs. Video-based DNN performance was consistent across sex, body mass index, low estimated glomerular filtration rate (≤45), presence of acute coronary syndromes, obstructive coronary artery disease, and left ventricular hypertrophy. Conclusion and relevance This cross-sectional study represents an early demonstration of estimating LVEF from standard angiogram videos of the left coronary artery using video-based DNNs. Further research can improve accuracy and reduce the variability of DNNs to maximize their clinical utility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何hh完成签到,获得积分20
刚刚
简单花花发布了新的文献求助50
1秒前
小马甲应助清爽的晓啸采纳,获得10
2秒前
Yashyi发布了新的文献求助10
2秒前
3秒前
打打应助wzc采纳,获得10
3秒前
耶斯发布了新的文献求助10
4秒前
5秒前
阿星发布了新的文献求助10
5秒前
七色蔷薇完成签到,获得积分10
6秒前
无私怜容发布了新的文献求助10
6秒前
自然凌旋完成签到,获得积分10
8秒前
科研通AI6应助苒苒采纳,获得10
8秒前
8秒前
李健应助芝士采纳,获得30
8秒前
深情安青应助芝士采纳,获得10
8秒前
汉堡包应助芝士采纳,获得10
8秒前
9秒前
9秒前
Akim应助早日毕业采纳,获得10
9秒前
10秒前
szp发布了新的文献求助10
10秒前
小葵完成签到 ,获得积分10
10秒前
ding应助LHT采纳,获得10
11秒前
威龙觉醒完成签到,获得积分20
11秒前
11秒前
自然凌旋发布了新的文献求助10
11秒前
11秒前
12秒前
殷勤的帽子完成签到 ,获得积分10
13秒前
大个应助苒苒采纳,获得10
14秒前
唐宇欣完成签到,获得积分10
14秒前
15秒前
香蕉觅云应助九有乔木采纳,获得10
15秒前
cg完成签到 ,获得积分10
15秒前
15秒前
英姑应助拼搏的二哈采纳,获得10
15秒前
zz发布了新的文献求助10
15秒前
无情的宛儿完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589147
求助须知:如何正确求助?哪些是违规求助? 4672942
关于积分的说明 14790572
捐赠科研通 4627592
什么是DOI,文献DOI怎么找? 2532071
邀请新用户注册赠送积分活动 1500734
关于科研通互助平台的介绍 1468396