Automated Assessment of Cardiac Systolic Function From Coronary Angiograms With Video-Based Artificial Intelligence Algorithms

射血分数 医学 接收机工作特性 冠状动脉疾病 心脏病学 内科学 优势比 算法 心力衰竭 计算机科学
作者
Robert Avram,Joshua P. Barrios,Sean Abreau,Cheng Yee Goh,Zeeshan Ahmed,Kevin C. Chung,Derek So,Jeffrey E. Olgin,Geoffrey H. Tison
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:8 (6): 586-586 被引量:14
标识
DOI:10.1001/jamacardio.2023.0968
摘要

Importance Understanding left ventricular ejection fraction (LVEF) during coronary angiography can assist in disease management. Objective To develop an automated approach to predict LVEF from left coronary angiograms. Design, Setting, and Participants This was a cross-sectional study with external validation using patient data from December 12, 2012, to December 31, 2019, from the University of California, San Francisco (UCSF). Data were randomly split into training, development, and test data sets. External validation data were obtained from the University of Ottawa Heart Institute. Included in the analysis were all patients 18 years or older who received a coronary angiogram and transthoracic echocardiogram (TTE) within 3 months before or 1 month after the angiogram. Exposure A video-based deep neural network (DNN) called CathEF was used to discriminate (binary) reduced LVEF (≤40%) and to predict (continuous) LVEF percentage from standard angiogram videos of the left coronary artery. Guided class-discriminative gradient class activation mapping (GradCAM) was applied to visualize pixels in angiograms that contributed most to DNN LVEF prediction. Results A total of 4042 adult angiograms with corresponding TTE LVEF from 3679 UCSF patients were included in the analysis. Mean (SD) patient age was 64.3 (13.3) years, and 2212 patients were male (65%). In the UCSF test data set (n = 813), the video-based DNN discriminated (binary) reduced LVEF (≤40%) with an area under the receiver operating characteristic curve (AUROC) of 0.911 (95% CI, 0.887-0.934); diagnostic odds ratio for reduced LVEF was 22.7 (95% CI, 14.0-37.0). DNN-predicted continuous LVEF had a mean absolute error (MAE) of 8.5% (95% CI, 8.1%-9.0%) compared with TTE LVEF. Although DNN-predicted continuous LVEF differed 5% or less compared with TTE LVEF in 38.0% (309 of 813) of test data set studies, differences greater than 15% were observed in 15.2% (124 of 813). In external validation (n = 776), video-based DNN discriminated (binary) reduced LVEF (≤40%) with an AUROC of 0.906 (95% CI, 0.881-0.931), and DNN-predicted continuous LVEF had an MAE of 7.0% (95% CI, 6.6%-7.4%). Video-based DNN tended to overestimate low LVEFs and underestimate high LVEFs. Video-based DNN performance was consistent across sex, body mass index, low estimated glomerular filtration rate (≤45), presence of acute coronary syndromes, obstructive coronary artery disease, and left ventricular hypertrophy. Conclusion and relevance This cross-sectional study represents an early demonstration of estimating LVEF from standard angiogram videos of the left coronary artery using video-based DNNs. Further research can improve accuracy and reduce the variability of DNNs to maximize their clinical utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力云朵完成签到,获得积分10
1秒前
tingtingzhang完成签到 ,获得积分10
1秒前
2秒前
如意的代容完成签到,获得积分10
2秒前
2秒前
Hello应助兔兔要睡觉采纳,获得10
3秒前
邓炎林完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
LL应助自然白安采纳,获得10
4秒前
jack1511发布了新的文献求助10
7秒前
共享精神应助无私幼蓉采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
XY完成签到 ,获得积分10
9秒前
nana完成签到 ,获得积分10
10秒前
12秒前
12秒前
魏晓宇发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
En119完成签到,获得积分10
19秒前
19秒前
Aom发布了新的文献求助10
19秒前
20秒前
思源应助魏晓宇采纳,获得10
21秒前
Zed完成签到,获得积分20
23秒前
喜悦发布了新的文献求助10
23秒前
23秒前
大模型应助科研通管家采纳,获得10
23秒前
英姑应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得30
23秒前
汉堡包应助科研通管家采纳,获得10
24秒前
汉堡包应助科研通管家采纳,获得10
24秒前
英姑应助科研通管家采纳,获得10
24秒前
充电宝应助科研通管家采纳,获得10
24秒前
思源应助科研通管家采纳,获得10
24秒前
Jasper应助科研通管家采纳,获得10
24秒前
在水一方应助科研通管家采纳,获得10
24秒前
24秒前
星辰大海应助科研通管家采纳,获得40
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664331
求助须知:如何正确求助?哪些是违规求助? 3224444
关于积分的说明 9757422
捐赠科研通 2934339
什么是DOI,文献DOI怎么找? 1606816
邀请新用户注册赠送积分活动 758829
科研通“疑难数据库(出版商)”最低求助积分说明 735012