已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automated Assessment of Cardiac Systolic Function From Coronary Angiograms With Video-Based Artificial Intelligence Algorithms

射血分数 医学 接收机工作特性 冠状动脉疾病 心脏病学 内科学 优势比 算法 心力衰竭 计算机科学
作者
Robert Avram,Joshua P. Barrios,Sean Abreau,Cheng Yee Goh,Zeeshan Ahmed,Kevin C. Chung,Derek So,Jeffrey E. Olgin,Geoffrey H. Tison
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:8 (6): 586-586 被引量:10
标识
DOI:10.1001/jamacardio.2023.0968
摘要

Importance Understanding left ventricular ejection fraction (LVEF) during coronary angiography can assist in disease management. Objective To develop an automated approach to predict LVEF from left coronary angiograms. Design, Setting, and Participants This was a cross-sectional study with external validation using patient data from December 12, 2012, to December 31, 2019, from the University of California, San Francisco (UCSF). Data were randomly split into training, development, and test data sets. External validation data were obtained from the University of Ottawa Heart Institute. Included in the analysis were all patients 18 years or older who received a coronary angiogram and transthoracic echocardiogram (TTE) within 3 months before or 1 month after the angiogram. Exposure A video-based deep neural network (DNN) called CathEF was used to discriminate (binary) reduced LVEF (≤40%) and to predict (continuous) LVEF percentage from standard angiogram videos of the left coronary artery. Guided class-discriminative gradient class activation mapping (GradCAM) was applied to visualize pixels in angiograms that contributed most to DNN LVEF prediction. Results A total of 4042 adult angiograms with corresponding TTE LVEF from 3679 UCSF patients were included in the analysis. Mean (SD) patient age was 64.3 (13.3) years, and 2212 patients were male (65%). In the UCSF test data set (n = 813), the video-based DNN discriminated (binary) reduced LVEF (≤40%) with an area under the receiver operating characteristic curve (AUROC) of 0.911 (95% CI, 0.887-0.934); diagnostic odds ratio for reduced LVEF was 22.7 (95% CI, 14.0-37.0). DNN-predicted continuous LVEF had a mean absolute error (MAE) of 8.5% (95% CI, 8.1%-9.0%) compared with TTE LVEF. Although DNN-predicted continuous LVEF differed 5% or less compared with TTE LVEF in 38.0% (309 of 813) of test data set studies, differences greater than 15% were observed in 15.2% (124 of 813). In external validation (n = 776), video-based DNN discriminated (binary) reduced LVEF (≤40%) with an AUROC of 0.906 (95% CI, 0.881-0.931), and DNN-predicted continuous LVEF had an MAE of 7.0% (95% CI, 6.6%-7.4%). Video-based DNN tended to overestimate low LVEFs and underestimate high LVEFs. Video-based DNN performance was consistent across sex, body mass index, low estimated glomerular filtration rate (≤45), presence of acute coronary syndromes, obstructive coronary artery disease, and left ventricular hypertrophy. Conclusion and relevance This cross-sectional study represents an early demonstration of estimating LVEF from standard angiogram videos of the left coronary artery using video-based DNNs. Further research can improve accuracy and reduce the variability of DNNs to maximize their clinical utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Morris发布了新的文献求助10
1秒前
小布完成签到,获得积分10
5秒前
充电宝应助齐佳采纳,获得10
8秒前
MAKEYF完成签到 ,获得积分10
13秒前
Demi_Ming完成签到,获得积分10
15秒前
Dana完成签到 ,获得积分10
16秒前
阿盛完成签到,获得积分10
16秒前
16秒前
17秒前
哈哈哈哈完成签到 ,获得积分10
18秒前
八个猪宝贝完成签到 ,获得积分10
18秒前
Morris发布了新的文献求助10
22秒前
朴素尔蓝完成签到,获得积分10
23秒前
卧镁铀钳完成签到 ,获得积分10
24秒前
球球完成签到 ,获得积分10
25秒前
25秒前
星星草完成签到,获得积分10
28秒前
希望天下0贩的0应助vv采纳,获得10
29秒前
欧阳X天完成签到 ,获得积分10
31秒前
星星草发布了新的文献求助20
32秒前
33秒前
小不完成签到 ,获得积分10
33秒前
Yasong完成签到 ,获得积分10
36秒前
隐形耷发布了新的文献求助10
39秒前
拾新完成签到,获得积分10
40秒前
41秒前
Zhao完成签到,获得积分10
41秒前
41秒前
那奇泡芙完成签到,获得积分10
43秒前
44秒前
拾新发布了新的文献求助10
45秒前
舒适怀寒完成签到 ,获得积分10
46秒前
原野小年发布了新的文献求助10
47秒前
QiaoHL完成签到 ,获得积分10
47秒前
浅尝离白发布了新的文献求助10
50秒前
隐形耷完成签到,获得积分10
51秒前
iris关注了科研通微信公众号
51秒前
1分钟前
葶ting完成签到 ,获得积分10
1分钟前
Orange应助不方采纳,获得10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150464
求助须知:如何正确求助?哪些是违规求助? 2801801
关于积分的说明 7845765
捐赠科研通 2459167
什么是DOI,文献DOI怎么找? 1309085
科研通“疑难数据库(出版商)”最低求助积分说明 628638
版权声明 601727