过度拟合
样品(材料)
计算机科学
断层(地质)
边距(机器学习)
人工智能
机器学习
偏移量(计算机科学)
模式识别(心理学)
数据挖掘
人工神经网络
色谱法
地质学
地震学
化学
程序设计语言
作者
Zhijun Ren,Yongsheng Zhu,Zheng Liu,Ke Feng
出处
期刊:IEEE Transactions on Instrumentation and Measurement
[Institute of Electrical and Electronics Engineers]
日期:2023-01-01
卷期号:72: 1-14
被引量:28
标识
DOI:10.1109/tim.2023.3271746
摘要
In severe data imbalance scenarios, fault samples are generally scarce, challenging the health management of industrial machinery significantly. Generative adversarial network, a promising solution to solve the data imbalance problem, suffers from a negative overfitting issue when trained with few samples. To tackle challenges, this paper proposes a Few-shot GAN which uses a sample-rich class to provide a sample distribution paradigm for the sample-poor class. More specifically, the GAN is first pre-trained using a sample-rich class. Then, a fine-tuning strategy based on anchor samples is developed, which on the one hand keeps the generated samples close to the real samples and on the other hand preserves the learned complex sample distributions as much as possible. Experiments demonstrate that the overfitting problem of the GAN with few samples trained is well solved and the diversity of the generated samples is improved. In addition, to avoid the offset of features extracted by the fault diagnosis model due to the addition of numerous generated samples in severe data imbalance scenarios, large-margin learning is introduced to constrain the similarities between the features of the generated samples and the real samples. The performance of the fault diagnosis model is significantly improved when numerous generated samples are added, benefiting the predictive maintenance-based decision and avoiding unexpected economic loss.
科研通智能强力驱动
Strongly Powered by AbleSci AI