Few-Shot GAN: Improving the Performance of Intelligent Fault Diagnosis in Severe Data Imbalance

过度拟合 样品(材料) 计算机科学 断层(地质) 边距(机器学习) 人工智能 机器学习 偏移量(计算机科学) 模式识别(心理学) 数据挖掘 人工神经网络 色谱法 地质学 地震学 化学 程序设计语言
作者
Zhijun Ren,Yongsheng Zhu,Zheng Liu,Ke Feng
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-14 被引量:41
标识
DOI:10.1109/tim.2023.3271746
摘要

In severe data imbalance scenarios, fault samples are generally scarce, challenging the health management of industrial machinery significantly. Generative adversarial network, a promising solution to solve the data imbalance problem, suffers from a negative overfitting issue when trained with few samples. To tackle challenges, this paper proposes a Few-shot GAN which uses a sample-rich class to provide a sample distribution paradigm for the sample-poor class. More specifically, the GAN is first pre-trained using a sample-rich class. Then, a fine-tuning strategy based on anchor samples is developed, which on the one hand keeps the generated samples close to the real samples and on the other hand preserves the learned complex sample distributions as much as possible. Experiments demonstrate that the overfitting problem of the GAN with few samples trained is well solved and the diversity of the generated samples is improved. In addition, to avoid the offset of features extracted by the fault diagnosis model due to the addition of numerous generated samples in severe data imbalance scenarios, large-margin learning is introduced to constrain the similarities between the features of the generated samples and the real samples. The performance of the fault diagnosis model is significantly improved when numerous generated samples are added, benefiting the predictive maintenance-based decision and avoiding unexpected economic loss.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaa发布了新的文献求助10
3秒前
wy.he应助Lee采纳,获得10
4秒前
5秒前
呦呦完成签到,获得积分10
6秒前
6秒前
7秒前
xfy完成签到,获得积分10
8秒前
Lucas应助HUSHIYI采纳,获得10
8秒前
9秒前
流沙包完成签到,获得积分10
10秒前
朱巴子发布了新的文献求助30
10秒前
希望天下0贩的0应助aaa采纳,获得10
12秒前
舟舟发布了新的文献求助10
12秒前
滑腻腻的小鱼完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
背完单词好睡觉完成签到 ,获得积分10
14秒前
kannakaco完成签到,获得积分10
14秒前
15秒前
15秒前
棒棒糖完成签到,获得积分10
16秒前
LL完成签到,获得积分10
16秒前
标致小翠发布了新的文献求助20
17秒前
满眼星辰发布了新的文献求助10
17秒前
NYZ完成签到,获得积分10
18秒前
18秒前
18秒前
LL发布了新的文献求助10
19秒前
miaojiaxin完成签到,获得积分10
20秒前
123free发布了新的文献求助20
20秒前
21秒前
22秒前
22秒前
miaojiaxin发布了新的文献求助10
24秒前
乐乐应助健忘的安萱采纳,获得10
26秒前
26秒前
超人爱吃菠菜完成签到,获得积分10
27秒前
z610938841发布了新的文献求助30
27秒前
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966468
求助须知:如何正确求助?哪些是违规求助? 3511965
关于积分的说明 11161125
捐赠科研通 3246769
什么是DOI,文献DOI怎么找? 1793483
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804403