耐旱性
拟南芥
生物
突变体
转录因子
遗传学
细胞生物学
基因
植物
作者
Yexing Jing,Ziyi Yang,Ruizhen Yang,Yunwei Zhang,Weihua Qiao,Yun Zhou,Jiaqiang Sun
摘要
Drought stress causes substantial losses in crop production per year worldwide, threatening global food security. Identification of the genetic components underlying drought tolerance in plants is of great importance. In this study, we report that loss-of-function of the chromatin-remodeling factor PICKLE (PKL), which is involved in repression of transcription, enhances drought tolerance of Arabidopsis. At first, we find that PKL interacts with ABI5 to regulate seed germination, but PKL regulates drought tolerance independently of ABI5. Then, we find that PKL is necessary for repressing the drought-tolerant gene AFL1, which is responsible for the drought-tolerant phenotype of pkl mutant. Genetic complementation tests demonstrate that the Chromo domain and ATPase domain but not the PHD domain are required for the function of PKL in regulating drought tolerance. Interestingly, we find that the DNA-binding domain (DBD) is essential for the protein stability of PKL. Furthermore, we demonstrate that the SUMO E3 ligase MMS21 interacts with and enhances the protein stability of PKL. Genetic interaction analysis shows that MMS21 and PKL additively regulate plant drought tolerance. Collectively, our findings uncover a MMS21-PKL-AFL1 module in regulating plant drought tolerance and offer insights into a novel strategy to improve crop drought tolerance.
科研通智能强力驱动
Strongly Powered by AbleSci AI