Efficient Screening of Metal Promoters of Pt Catalysts for C–H Bond Activation in Propane Dehydrogenation from a Combined First-Principles Calculations and Machine-Learning Study

丙烷 脱氢 催化作用 化学 债券 金属 有机化学 业务 财务
作者
Nuodan Zhou,Wen Liu,Faheem Jan,Zhongkang Han,Bo Li
出处
期刊:ACS omega [American Chemical Society]
卷期号:8 (26): 23982-23990 被引量:6
标识
DOI:10.1021/acsomega.3c02675
摘要

Platinum-based materials are the most widely used catalysts in propane direct dehydrogenation, which could achieve a balanced activity between both propane conversion and propene formation. One of the core issues of Pt catalysts is how to efficiently activate the strong C-H bond. It has been suggested that adding second metal promoters could greatly solve this problem. In the current work, first-principles calculations combined with machine learning are performed in order to obtain the most promising metal promoters and identify key descriptors for control performance. The combination of three different modes of adding metal promoters and two ratios between promoters and platinum sufficiently describes the system under investigation. The activity of propane activation and the formation of propene are reflected by the increase or decrease of the adsorption energy and C-H bond activation of propane and propene after the addition of promoters. The data of adsorption energy and kinetic barriers from first-principles calculations are streamed into five machine-learning methods including gradient boosting regressor (GBR), K neighbors regressor (KNR), random forest regressor (RFR), and AdaBoost regressor (ABR) together with the sure independence screening and sparsifying operator (SISSO). The metrics (RMSE and R2) from different methods indicated that GBR and SISSO have the most optimal performance. Furthermore, it is found that some descriptors derived from the intrinsic properties of metal promoters can determine their properties. In the end, Pt3Mo is identified as the most active catalyst. The present work not only provides a solid foundation for optimizing Pt catalysts but also provides a clear roadmap to screen metal alloy catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浅暖发布了新的文献求助10
刚刚
刚刚
天天快乐应助李颜龙采纳,获得10
刚刚
youngga07发布了新的文献求助10
刚刚
1秒前
柯一一应助王雯雯采纳,获得10
1秒前
1秒前
谨慎枫叶完成签到,获得积分20
1秒前
赘婿应助RIchard采纳,获得10
2秒前
3秒前
orixero应助奋斗的绿海采纳,获得10
3秒前
活力契发布了新的文献求助10
4秒前
迷路枫完成签到,获得积分10
4秒前
twelveleven发布了新的文献求助10
4秒前
隐形曼青应助马里奥采纳,获得10
4秒前
ttkx完成签到,获得积分10
4秒前
LEMONS应助爱笑的稀采纳,获得10
6秒前
开心友儿发布了新的文献求助10
6秒前
行走的鱼发布了新的文献求助10
7秒前
7秒前
木易完成签到,获得积分10
7秒前
豚骨拉面发布了新的文献求助10
7秒前
wulianlian完成签到,获得积分20
7秒前
带虾的烧麦完成签到,获得积分10
8秒前
8秒前
奋斗的绿海完成签到,获得积分20
9秒前
9秒前
希望天下0贩的0应助sxy采纳,获得10
9秒前
10秒前
FashionBoy应助紫心采纳,获得10
10秒前
善学以致用应助zcy采纳,获得10
11秒前
Thea发布了新的文献求助30
11秒前
慕青应助梦若浮生采纳,获得10
12秒前
wwliu5963发布了新的文献求助10
13秒前
呆萌的正豪完成签到,获得积分10
13秒前
活力契完成签到,获得积分10
14秒前
WYF完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959564
求助须知:如何正确求助?哪些是违规求助? 3505819
关于积分的说明 11126349
捐赠科研通 3237712
什么是DOI,文献DOI怎么找? 1789318
邀请新用户注册赠送积分活动 871669
科研通“疑难数据库(出版商)”最低求助积分说明 802951