已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Efficient Screening of Metal Promoters of Pt Catalysts for C–H Bond Activation in Propane Dehydrogenation from a Combined First-Principles Calculations and Machine-Learning Study

丙烷 脱氢 催化作用 化学 债券 金属 有机化学 业务 财务
作者
Nuodan Zhou,Wen Liu,Faheem Jan,Zhongkang Han,Bo Li
出处
期刊:ACS omega [American Chemical Society]
卷期号:8 (26): 23982-23990 被引量:6
标识
DOI:10.1021/acsomega.3c02675
摘要

Platinum-based materials are the most widely used catalysts in propane direct dehydrogenation, which could achieve a balanced activity between both propane conversion and propene formation. One of the core issues of Pt catalysts is how to efficiently activate the strong C-H bond. It has been suggested that adding second metal promoters could greatly solve this problem. In the current work, first-principles calculations combined with machine learning are performed in order to obtain the most promising metal promoters and identify key descriptors for control performance. The combination of three different modes of adding metal promoters and two ratios between promoters and platinum sufficiently describes the system under investigation. The activity of propane activation and the formation of propene are reflected by the increase or decrease of the adsorption energy and C-H bond activation of propane and propene after the addition of promoters. The data of adsorption energy and kinetic barriers from first-principles calculations are streamed into five machine-learning methods including gradient boosting regressor (GBR), K neighbors regressor (KNR), random forest regressor (RFR), and AdaBoost regressor (ABR) together with the sure independence screening and sparsifying operator (SISSO). The metrics (RMSE and R2) from different methods indicated that GBR and SISSO have the most optimal performance. Furthermore, it is found that some descriptors derived from the intrinsic properties of metal promoters can determine their properties. In the end, Pt3Mo is identified as the most active catalyst. The present work not only provides a solid foundation for optimizing Pt catalysts but also provides a clear roadmap to screen metal alloy catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小趴菜完成签到 ,获得积分10
3秒前
SCI完成签到 ,获得积分10
6秒前
goodltl完成签到 ,获得积分10
6秒前
ZhaoCun完成签到 ,获得积分10
7秒前
wxh完成签到 ,获得积分10
9秒前
养花低手完成签到 ,获得积分10
9秒前
上上签完成签到,获得积分10
9秒前
忧伤的心锁完成签到 ,获得积分10
10秒前
10秒前
zzzy完成签到 ,获得积分10
10秒前
11秒前
YYY完成签到 ,获得积分10
11秒前
王子娇完成签到 ,获得积分10
11秒前
又村完成签到 ,获得积分10
12秒前
huihui完成签到,获得积分10
15秒前
严明完成签到,获得积分10
17秒前
严明完成签到,获得积分10
17秒前
清风明月完成签到 ,获得积分10
17秒前
GRG完成签到 ,获得积分0
18秒前
pearson完成签到,获得积分10
18秒前
19秒前
坦率灵槐完成签到 ,获得积分10
19秒前
19秒前
康康完成签到,获得积分10
19秒前
落落完成签到 ,获得积分0
20秒前
上官若男应助Zeonnnnn采纳,获得10
20秒前
张婧媛完成签到,获得积分10
21秒前
研友_Lw43on发布了新的文献求助20
22秒前
义气幼珊完成签到 ,获得积分10
22秒前
zzzy完成签到 ,获得积分10
23秒前
orixero应助上上签采纳,获得10
25秒前
无极微光应助康康采纳,获得20
25秒前
wanci应助科研通管家采纳,获得10
26秒前
GingerF应助科研通管家采纳,获得50
26秒前
加缪应助科研通管家采纳,获得10
26秒前
1111完成签到,获得积分10
26秒前
GingerF应助科研通管家采纳,获得50
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
加缪应助科研通管家采纳,获得50
26秒前
FashionBoy应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4925547
求助须知:如何正确求助?哪些是违规求助? 4195847
关于积分的说明 13031037
捐赠科研通 3967326
什么是DOI,文献DOI怎么找? 2174599
邀请新用户注册赠送积分活动 1191845
关于科研通互助平台的介绍 1101517