Efficient Screening of Metal Promoters of Pt Catalysts for C–H Bond Activation in Propane Dehydrogenation from a Combined First-Principles Calculations and Machine-Learning Study

丙烯 丙烷 脱氢 催化作用 化学 铂金 材料科学 有机化学
作者
Nuodan Zhou,Wen Liu,Faheem Jan,Zhongkang Han,Bo Li
出处
期刊:ACS omega [American Chemical Society]
卷期号:8 (26): 23982-23990 被引量:6
标识
DOI:10.1021/acsomega.3c02675
摘要

Platinum-based materials are the most widely used catalysts in propane direct dehydrogenation, which could achieve a balanced activity between both propane conversion and propene formation. One of the core issues of Pt catalysts is how to efficiently activate the strong C–H bond. It has been suggested that adding second metal promoters could greatly solve this problem. In the current work, first-principles calculations combined with machine learning are performed in order to obtain the most promising metal promoters and identify key descriptors for control performance. The combination of three different modes of adding metal promoters and two ratios between promoters and platinum sufficiently describes the system under investigation. The activity of propane activation and the formation of propene are reflected by the increase or decrease of the adsorption energy and C–H bond activation of propane and propene after the addition of promoters. The data of adsorption energy and kinetic barriers from first-principles calculations are streamed into five machine-learning methods including gradient boosting regressor (GBR), K neighbors regressor (KNR), random forest regressor (RFR), and AdaBoost regressor (ABR) together with the sure independence screening and sparsifying operator (SISSO). The metrics (RMSE and R2) from different methods indicated that GBR and SISSO have the most optimal performance. Furthermore, it is found that some descriptors derived from the intrinsic properties of metal promoters can determine their properties. In the end, Pt3Mo is identified as the most active catalyst. The present work not only provides a solid foundation for optimizing Pt catalysts but also provides a clear roadmap to screen metal alloy catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
爆米花应助Summer采纳,获得10
2秒前
SQDHZJ发布了新的文献求助10
4秒前
风吟完成签到,获得积分10
4秒前
上官若男应助姬妙花采纳,获得30
5秒前
武文信发布了新的文献求助10
6秒前
Yfreya发布了新的文献求助10
6秒前
6秒前
8秒前
fifty完成签到 ,获得积分10
9秒前
10秒前
10秒前
彩色的绣连应助SQDHZJ采纳,获得10
11秒前
11秒前
12秒前
14秒前
15秒前
宋晓蓝发布了新的文献求助10
15秒前
15秒前
ggg发布了新的文献求助10
16秒前
16秒前
追寻如豹发布了新的文献求助10
17秒前
CodeCraft应助风中的语蝶采纳,获得10
20秒前
Ephemeral完成签到 ,获得积分10
20秒前
风吟发布了新的文献求助10
21秒前
小蘑菇应助Yfreya采纳,获得10
22秒前
24秒前
852应助闪闪的绮波采纳,获得10
24秒前
fzm发布了新的文献求助10
25秒前
27秒前
SciGPT应助hulala采纳,获得10
29秒前
31秒前
小鹅完成签到,获得积分10
31秒前
圆圆完成签到 ,获得积分10
32秒前
33秒前
34秒前
武文信完成签到,获得积分20
36秒前
小小完成签到 ,获得积分10
36秒前
36秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161699
求助须知:如何正确求助?哪些是违规求助? 2812944
关于积分的说明 7897948
捐赠科研通 2471893
什么是DOI,文献DOI怎么找? 1316222
科研通“疑难数据库(出版商)”最低求助积分说明 631263
版权声明 602129