Deep Learning for Medical Image-Based Cancer Diagnosis

深度学习 人工智能 计算机科学 学习迁移 过度拟合 分割 医学影像学 机器学习 人工神经网络 图像分割
作者
Xiaoyan Jiang,Zuojin Hu,Shuihua Wang‎,Yudong Zhang
出处
期刊:Cancers [MDPI AG]
卷期号:15 (14): 3608-3608 被引量:90
标识
DOI:10.3390/cancers15143608
摘要

(1) Background: The application of deep learning technology to realize cancer diagnosis based on medical images is one of the research hotspots in the field of artificial intelligence and computer vision. Due to the rapid development of deep learning methods, cancer diagnosis requires very high accuracy and timeliness as well as the inherent particularity and complexity of medical imaging. A comprehensive review of relevant studies is necessary to help readers better understand the current research status and ideas. (2) Methods: Five radiological images, including X-ray, ultrasound (US), computed tomography (CT), magnetic resonance imaging (MRI), positron emission computed tomography (PET), and histopathological images, are reviewed in this paper. The basic architecture of deep learning and classical pretrained models are comprehensively reviewed. In particular, advanced neural networks emerging in recent years, including transfer learning, ensemble learning (EL), graph neural network, and vision transformer (ViT), are introduced. Five overfitting prevention methods are summarized: batch normalization, dropout, weight initialization, and data augmentation. The application of deep learning technology in medical image-based cancer analysis is sorted out. (3) Results: Deep learning has achieved great success in medical image-based cancer diagnosis, showing good results in image classification, image reconstruction, image detection, image segmentation, image registration, and image synthesis. However, the lack of high-quality labeled datasets limits the role of deep learning and faces challenges in rare cancer diagnosis, multi-modal image fusion, model explainability, and generalization. (4) Conclusions: There is a need for more public standard databases for cancer. The pre-training model based on deep neural networks has the potential to be improved, and special attention should be paid to the research of multimodal data fusion and supervised paradigm. Technologies such as ViT, ensemble learning, and few-shot learning will bring surprises to cancer diagnosis based on medical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奶昔发布了新的文献求助10
刚刚
无花果应助YBK采纳,获得10
刚刚
1秒前
5秒前
徐翩跹完成签到,获得积分10
6秒前
6秒前
毕十三发布了新的文献求助30
7秒前
老马哥完成签到 ,获得积分0
8秒前
daihahaha完成签到,获得积分10
8秒前
Valky发布了新的文献求助10
9秒前
neversay4ever完成签到,获得积分10
10秒前
sdniuidifod发布了新的文献求助10
11秒前
13秒前
烟花应助Lqian_Yu采纳,获得10
14秒前
卓卓卓发布了新的文献求助10
17秒前
秦杨发布了新的文献求助10
18秒前
cyl应助David采纳,获得10
19秒前
隐形曼青应助毕十三采纳,获得30
19秒前
20秒前
丰富绿蝶完成签到,获得积分10
21秒前
完美世界应助2021采纳,获得10
21秒前
自信眼睛完成签到 ,获得积分10
22秒前
23秒前
拼搏的代玉完成签到,获得积分10
23秒前
24秒前
乐乐应助momo采纳,获得10
25秒前
26秒前
baiabi完成签到,获得积分10
26秒前
27秒前
29秒前
30秒前
30秒前
领导范儿应助haixuWang采纳,获得10
30秒前
CodeCraft应助PP采纳,获得10
31秒前
情何yi堪完成签到,获得积分10
33秒前
33秒前
35秒前
35秒前
36秒前
小二郎应助xiaojing采纳,获得10
37秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462689
求助须知:如何正确求助?哪些是违规求助? 3056214
关于积分的说明 9050947
捐赠科研通 2745844
什么是DOI,文献DOI怎么找? 1506601
科研通“疑难数据库(出版商)”最低求助积分说明 696181
邀请新用户注册赠送积分活动 695693