Brain Topology Modeling With EEG-Graphs for Auditory Spatial Attention Detection

脑电图 计算机科学 解码方法 判别式 卷积神经网络 图形 模式识别(心理学) 人工智能 网络拓扑 语音识别 拓扑(电路) 理论计算机科学 算法 神经科学 心理学 数学 组合数学 操作系统
作者
Siqi Cai,Tanja Schultz,Haizhou Li
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:71 (1): 171-182 被引量:13
标识
DOI:10.1109/tbme.2023.3294242
摘要

Despite recent advances, the decoding of auditory attention from brain signals remains a challenge. A key solution is the extraction of discriminative features from high-dimensional data, such as multi-channel electroencephalography (EEG). However, to our knowledge, topological relationships between individual channels have not yet been considered in any study. In this work, we introduced a novel architecture that exploits the topology of the human brain to perform auditory spatial attention detection (ASAD) from EEG signals.We propose EEG-Graph Net, an EEG-graph convolutional network, which employs a neural attention mechanism. This mechanism models the topology of the human brain in terms of the spatial pattern of EEG signals as a graph. In the EEG-Graph, each EEG channel is represented by a node, while the relationship between two EEG channels is represented by an edge between the respective nodes. The convolutional network takes the multi-channel EEG signals as a time series of EEG-graphs and learns the node and edge weights from the contribution of the EEG signals to the ASAD task. The proposed architecture supports the interpretation of the experimental results by data visualization.We conducted experiments on two publicly available databases. The experimental results showed that EEG-Graph Net significantly outperforms the state-of-the-art methods in terms of decoding performance. In addition, the analysis of the learned weight patterns provides insights into the processing of continuous speech in the brain and confirms findings from neuroscientific studies.We showed that modeling brain topology with EEG-graphs yields highly competitive results for auditory spatial attention detection.The proposed EEG-Graph Net is more lightweight and accurate than competing baselines and provides explanations for the results. Also, the architecture can be easily transferred to other brain-computer interface (BCI) tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭于晏应助max采纳,获得10
1秒前
1秒前
呼延水云发布了新的文献求助10
2秒前
粱踏歌发布了新的文献求助10
2秒前
3秒前
wq5729发布了新的文献求助10
3秒前
bubble发布了新的文献求助10
3秒前
hou发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
完美世界应助的的墨采纳,获得10
6秒前
7秒前
7秒前
小猪猪饲养员完成签到,获得积分10
7秒前
8秒前
勤劳春天关注了科研通微信公众号
8秒前
JamesPei应助和谐的寒安采纳,获得10
9秒前
李健的小迷弟应助粱踏歌采纳,获得10
9秒前
10秒前
Justin发布了新的文献求助10
10秒前
skyline完成签到,获得积分20
11秒前
星辰大海应助机灵香芦采纳,获得30
11秒前
11秒前
lier应助llzuo采纳,获得10
12秒前
Ava应助呼延水云采纳,获得10
12秒前
rot完成签到,获得积分10
12秒前
合适的鼠标完成签到,获得积分10
13秒前
13秒前
zuojuan完成签到,获得积分10
13秒前
wjl发布了新的文献求助10
14秒前
max发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
16秒前
16秒前
Ryan发布了新的文献求助10
16秒前
科研小弟发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515364
求助须知:如何正确求助?哪些是违规求助? 3097702
关于积分的说明 9236476
捐赠科研通 2792578
什么是DOI,文献DOI怎么找? 1532606
邀请新用户注册赠送积分活动 712198
科研通“疑难数据库(出版商)”最低求助积分说明 707160