Brain Topology Modeling With EEG-Graphs for Auditory Spatial Attention Detection

脑电图 计算机科学 解码方法 判别式 卷积神经网络 图形 模式识别(心理学) 人工智能 网络拓扑 语音识别 拓扑(电路) 理论计算机科学 算法 神经科学 心理学 数学 组合数学 操作系统
作者
Siqi Cai,Tanja Schultz,Haizhou Li
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:71 (1): 171-182 被引量:13
标识
DOI:10.1109/tbme.2023.3294242
摘要

Despite recent advances, the decoding of auditory attention from brain signals remains a challenge. A key solution is the extraction of discriminative features from high-dimensional data, such as multi-channel electroencephalography (EEG). However, to our knowledge, topological relationships between individual channels have not yet been considered in any study. In this work, we introduced a novel architecture that exploits the topology of the human brain to perform auditory spatial attention detection (ASAD) from EEG signals.We propose EEG-Graph Net, an EEG-graph convolutional network, which employs a neural attention mechanism. This mechanism models the topology of the human brain in terms of the spatial pattern of EEG signals as a graph. In the EEG-Graph, each EEG channel is represented by a node, while the relationship between two EEG channels is represented by an edge between the respective nodes. The convolutional network takes the multi-channel EEG signals as a time series of EEG-graphs and learns the node and edge weights from the contribution of the EEG signals to the ASAD task. The proposed architecture supports the interpretation of the experimental results by data visualization.We conducted experiments on two publicly available databases. The experimental results showed that EEG-Graph Net significantly outperforms the state-of-the-art methods in terms of decoding performance. In addition, the analysis of the learned weight patterns provides insights into the processing of continuous speech in the brain and confirms findings from neuroscientific studies.We showed that modeling brain topology with EEG-graphs yields highly competitive results for auditory spatial attention detection.The proposed EEG-Graph Net is more lightweight and accurate than competing baselines and provides explanations for the results. Also, the architecture can be easily transferred to other brain-computer interface (BCI) tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阚曦完成签到,获得积分10
1秒前
1秒前
fang完成签到,获得积分10
1秒前
mmddlj完成签到 ,获得积分10
11秒前
东郭凝蝶完成签到 ,获得积分10
12秒前
左丘映易完成签到,获得积分0
19秒前
奋斗的妙海完成签到 ,获得积分0
22秒前
summer完成签到,获得积分10
24秒前
平凡中的限量版完成签到,获得积分10
26秒前
hhh2018687完成签到,获得积分10
27秒前
玉yu完成签到 ,获得积分10
28秒前
CodeCraft应助宗水绿采纳,获得10
31秒前
最美夕阳红完成签到,获得积分10
32秒前
余味应助果蝇宝宝采纳,获得10
35秒前
Enchanted完成签到 ,获得积分10
36秒前
木又完成签到 ,获得积分10
38秒前
沐颜完成签到 ,获得积分10
50秒前
1分钟前
鞑靼完成签到 ,获得积分10
1分钟前
chenying完成签到 ,获得积分10
1分钟前
1分钟前
ywzwszl完成签到,获得积分10
1分钟前
1分钟前
现实的大白完成签到 ,获得积分10
1分钟前
CipherSage应助科研通管家采纳,获得20
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
isedu完成签到,获得积分10
1分钟前
一路狂奔等不了完成签到 ,获得积分10
1分钟前
zhang完成签到 ,获得积分10
1分钟前
Lz555完成签到 ,获得积分10
1分钟前
悠悠完成签到 ,获得积分10
1分钟前
wenbinvan完成签到,获得积分0
1分钟前
2分钟前
hyl-tcm完成签到 ,获得积分10
2分钟前
怡然白竹完成签到 ,获得积分10
2分钟前
研友_8y2G0L完成签到,获得积分10
2分钟前
科研通AI5应助小牛采纳,获得30
2分钟前
吃小孩的妖怪完成签到 ,获得积分10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Maneuvering of a Damaged Navy Combatant 650
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770497
求助须知:如何正确求助?哪些是违规求助? 3315488
关于积分的说明 10176532
捐赠科研通 3030532
什么是DOI,文献DOI怎么找? 1663015
邀请新用户注册赠送积分活动 795258
科研通“疑难数据库(出版商)”最低求助积分说明 756705