三临界点
定向渗流
缩放比例
重整化群
双稳态
统计物理学
普遍性(动力系统)
相变
蒙特卡罗方法
渡线
物理
凝聚态物理
渗透(认知心理学)
平均场理论
临界指数
数学
相图
相(物质)
数学物理
量子力学
统计
几何学
计算机科学
人工智能
生物
神经科学
作者
Marcelo A. Pires,C. I. N. Sampaio Filho,H. J. Herrmann,José S. Andrade
标识
DOI:10.1016/j.chaos.2023.113761
摘要
We scrutinize the phenomenology arising from a minimal vaccination-epidemic (MVE) dynamics using three methods: mean-field approach, Monte Carlo simulations, and finite-size scaling analysis. The mean-field formulation reveals that the MVE model exhibits either a continuous or a discontinuous active-to-absorbing phase transition, accompanied by bistability and a tricritical point. However, on square lattices, we detect no signs of bistability, and we disclose that the active-to-absorbing state transition has a scaling invariance and critical exponents compatible with the continuous transition of the directed percolation universality class. Additionally, our findings indicate that the tricritical and crossover behaviors of the MVE dynamics belong to the universality class of mean-field tricritical directed percolation.
科研通智能强力驱动
Strongly Powered by AbleSci AI