清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning models based on hyperspectral data and time-series phenotypes for predicting quality attributes in lettuces under water stress

高光谱成像 残余物 人工智能 深度学习 计算机科学 偏最小二乘回归 人工神经网络 机器学习 回归 循环神经网络 模式识别(心理学) 数据挖掘 数学 统计 算法
作者
S.K. Yu,Jiangchuan Fan,Xianju Lu,Weiliang Wen,Song Shao,Dong Liang,Xiaozeng Yang,Xinyu Guo,Chunjiang Zhao
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:211: 108034-108034 被引量:9
标识
DOI:10.1016/j.compag.2023.108034
摘要

Efficiently analyzing the relationship between plant phenotypes, quality, and resistance remains challenging. In this study, deep learning models based on hyperspectral data and time-series phenotypes from the high-throughput plant phenotyping (HTPP) platform were proposed to predict quality attributes of lettuce under water stress, including SSC, pH value, nitrate (NO3–), and calcium (Ca2+). First, deep learning models were developed using the Inception module and raw hyperspectral data to non-destructively predict the above quality attributes. In addition, partial least squares regression (PLSR) and support vector regression (SVR) were used to develop prediction models to evaluate performance of the Inception module. Second, the residual and attention modules were implemented to enhance performance of the Inception module. Third, time-series phenotypes were fed into four recurrent neural networks (RNNs), such as TimeDistributed (TD), long short-term memory (LSTM), Gated Recurrent Unit (GRU), and Bidirectional RNN (BRNN) and combined with the optimal deep learning models based on hyperspectral data to enhance prediction precision. The optimal performance of the Inception-residual-attention-TD model was achieved with Rp2 of 0.8900 and 0.9435 for SSC and NO3–, respectively. The Inception-residual-TD model with Rp2 of 0.9583 provided the most accurate pH value prediction. With Rp2 of 0.8716, the Inception-attention-LSTM model provided the most accurate prediction of Ca2+. Meanwhile, the Inception-residual-TD model was used to detect water stress, producing an Accuracyp of 98.86%. The Inception-residual model based on pixel-wise hyperspectral data was used to visualize the spatial distribution of pH value, and the distribution map was used to detect early water stress. The results indicate that deep learning models can use hyperspectral data and time-series phenotypes to predict lettuce quality attributes and water stress in a non-destructive manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ste56发布了新的文献求助10
3秒前
小西完成签到 ,获得积分10
7秒前
19秒前
阿航发布了新的文献求助10
26秒前
阿鑫发布了新的文献求助10
59秒前
白嫖论文完成签到 ,获得积分10
1分钟前
maggiexjl完成签到,获得积分10
1分钟前
和谐的夏岚完成签到 ,获得积分10
2分钟前
creep2020完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
Cole完成签到,获得积分10
2分钟前
CodeCraft应助Cole采纳,获得10
2分钟前
姚芭蕉完成签到 ,获得积分0
2分钟前
2分钟前
Cole发布了新的文献求助10
3分钟前
小哈完成签到 ,获得积分10
3分钟前
英勇无春发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
牛牛牛刘完成签到 ,获得积分10
4分钟前
英勇无春完成签到,获得积分10
4分钟前
清秀的怀蕊完成签到 ,获得积分10
4分钟前
5分钟前
wsb76完成签到 ,获得积分10
5分钟前
午后狂睡完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
zhangbh1990完成签到 ,获得积分10
6分钟前
Terahertz完成签到 ,获得积分10
6分钟前
7分钟前
没时间解释了完成签到 ,获得积分10
7分钟前
万万发布了新的文献求助10
7分钟前
7分钟前
飞翔的荷兰人完成签到,获得积分10
7分钟前
万万完成签到,获得积分10
7分钟前
俊逸吐司完成签到 ,获得积分10
7分钟前
7分钟前
小袁搜题发布了新的文献求助10
8分钟前
田様应助JueruiWang1258采纳,获得10
8分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450460
求助须知:如何正确求助?哪些是违规求助? 3045952
关于积分的说明 9003759
捐赠科研通 2734604
什么是DOI,文献DOI怎么找? 1500090
科研通“疑难数据库(出版商)”最低求助积分说明 693334
邀请新用户注册赠送积分活动 691477