Deep learning models based on hyperspectral data and time-series phenotypes for predicting quality attributes in lettuces under water stress

高光谱成像 残余物 人工智能 深度学习 计算机科学 偏最小二乘回归 人工神经网络 机器学习 回归 循环神经网络 模式识别(心理学) 数据挖掘 数学 统计 算法
作者
S.K. Yu,Jiangchuan Fan,Xianju Lu,Weiliang Wen,Song Shao,Dong Liang,Xiaozeng Yang,Xinyu Guo,Chunjiang Zhao
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:211: 108034-108034 被引量:33
标识
DOI:10.1016/j.compag.2023.108034
摘要

Efficiently analyzing the relationship between plant phenotypes, quality, and resistance remains challenging. In this study, deep learning models based on hyperspectral data and time-series phenotypes from the high-throughput plant phenotyping (HTPP) platform were proposed to predict quality attributes of lettuce under water stress, including SSC, pH value, nitrate (NO3–), and calcium (Ca2+). First, deep learning models were developed using the Inception module and raw hyperspectral data to non-destructively predict the above quality attributes. In addition, partial least squares regression (PLSR) and support vector regression (SVR) were used to develop prediction models to evaluate performance of the Inception module. Second, the residual and attention modules were implemented to enhance performance of the Inception module. Third, time-series phenotypes were fed into four recurrent neural networks (RNNs), such as TimeDistributed (TD), long short-term memory (LSTM), Gated Recurrent Unit (GRU), and Bidirectional RNN (BRNN) and combined with the optimal deep learning models based on hyperspectral data to enhance prediction precision. The optimal performance of the Inception-residual-attention-TD model was achieved with Rp2 of 0.8900 and 0.9435 for SSC and NO3–, respectively. The Inception-residual-TD model with Rp2 of 0.9583 provided the most accurate pH value prediction. With Rp2 of 0.8716, the Inception-attention-LSTM model provided the most accurate prediction of Ca2+. Meanwhile, the Inception-residual-TD model was used to detect water stress, producing an Accuracyp of 98.86%. The Inception-residual model based on pixel-wise hyperspectral data was used to visualize the spatial distribution of pH value, and the distribution map was used to detect early water stress. The results indicate that deep learning models can use hyperspectral data and time-series phenotypes to predict lettuce quality attributes and water stress in a non-destructive manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苏silence发布了新的文献求助10
刚刚
易楠发布了新的文献求助10
刚刚
ning完成签到,获得积分10
刚刚
六百六十六完成签到,获得积分10
刚刚
发发发发布了新的文献求助30
刚刚
852应助crytek采纳,获得50
刚刚
长颈鹿发布了新的文献求助10
刚刚
1秒前
guozizi发布了新的文献求助10
1秒前
zhong完成签到,获得积分10
1秒前
yulong完成签到,获得积分10
1秒前
高登登发布了新的文献求助10
2秒前
Criminology34应助DueDue0327采纳,获得10
2秒前
漂亮的秋天完成签到 ,获得积分10
2秒前
anny2022完成签到,获得积分10
2秒前
Patty发布了新的文献求助10
2秒前
吕培森发布了新的文献求助10
2秒前
2秒前
称心寒松完成签到,获得积分10
2秒前
jay2000完成签到,获得积分10
3秒前
虹虹完成签到 ,获得积分10
3秒前
Frank应助美满的太英采纳,获得10
4秒前
redflower发布了新的文献求助10
4秒前
小笼包发布了新的文献求助10
4秒前
CipherSage应助tinatian270采纳,获得10
4秒前
李归来完成签到 ,获得积分10
4秒前
阳佟天川完成签到,获得积分10
4秒前
Owen应助melody采纳,获得30
5秒前
精明柜子应助重楼远志采纳,获得100
5秒前
解语花完成签到,获得积分10
5秒前
5秒前
Jasper应助啦啦啦采纳,获得10
5秒前
精明人达完成签到,获得积分10
6秒前
6秒前
由哎完成签到,获得积分10
6秒前
mlzmlz完成签到,获得积分0
6秒前
杨嘉璐完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006