Deep learning models based on hyperspectral data and time-series phenotypes for predicting quality attributes in lettuces under water stress

高光谱成像 残余物 人工智能 深度学习 计算机科学 偏最小二乘回归 人工神经网络 机器学习 回归 循环神经网络 模式识别(心理学) 数据挖掘 数学 统计 算法
作者
S.K. Yu,Jiangchuan Fan,Xianju Lu,Weiliang Wen,Song Shao,Dong Liang,Xiaozeng Yang,Xinyu Guo,Chunjiang Zhao
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:211: 108034-108034 被引量:33
标识
DOI:10.1016/j.compag.2023.108034
摘要

Efficiently analyzing the relationship between plant phenotypes, quality, and resistance remains challenging. In this study, deep learning models based on hyperspectral data and time-series phenotypes from the high-throughput plant phenotyping (HTPP) platform were proposed to predict quality attributes of lettuce under water stress, including SSC, pH value, nitrate (NO3–), and calcium (Ca2+). First, deep learning models were developed using the Inception module and raw hyperspectral data to non-destructively predict the above quality attributes. In addition, partial least squares regression (PLSR) and support vector regression (SVR) were used to develop prediction models to evaluate performance of the Inception module. Second, the residual and attention modules were implemented to enhance performance of the Inception module. Third, time-series phenotypes were fed into four recurrent neural networks (RNNs), such as TimeDistributed (TD), long short-term memory (LSTM), Gated Recurrent Unit (GRU), and Bidirectional RNN (BRNN) and combined with the optimal deep learning models based on hyperspectral data to enhance prediction precision. The optimal performance of the Inception-residual-attention-TD model was achieved with Rp2 of 0.8900 and 0.9435 for SSC and NO3–, respectively. The Inception-residual-TD model with Rp2 of 0.9583 provided the most accurate pH value prediction. With Rp2 of 0.8716, the Inception-attention-LSTM model provided the most accurate prediction of Ca2+. Meanwhile, the Inception-residual-TD model was used to detect water stress, producing an Accuracyp of 98.86%. The Inception-residual model based on pixel-wise hyperspectral data was used to visualize the spatial distribution of pH value, and the distribution map was used to detect early water stress. The results indicate that deep learning models can use hyperspectral data and time-series phenotypes to predict lettuce quality attributes and water stress in a non-destructive manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
哈哈哈完成签到,获得积分10
刚刚
秋去去完成签到,获得积分10
1秒前
希望天下0贩的0应助Towne采纳,获得10
1秒前
2秒前
2秒前
李健应助CJN采纳,获得10
2秒前
lily完成签到,获得积分20
3秒前
流云发布了新的文献求助10
3秒前
April完成签到 ,获得积分10
3秒前
清秀橘子完成签到,获得积分10
3秒前
mika完成签到,获得积分10
3秒前
wuliumu完成签到,获得积分10
3秒前
4秒前
4秒前
lizhoukan1完成签到,获得积分10
4秒前
李爱国应助whisper采纳,获得10
4秒前
5秒前
李爱国应助Rgly采纳,获得10
5秒前
6秒前
6秒前
6秒前
6秒前
7秒前
张靖松完成签到 ,获得积分10
8秒前
Owen应助雨碎寒江采纳,获得10
8秒前
8秒前
8秒前
皮老八发布了新的文献求助10
8秒前
Planck发布了新的文献求助10
9秒前
苹果绿发布了新的文献求助10
9秒前
9秒前
9秒前
惊鸿客完成签到,获得积分10
9秒前
LHL发布了新的文献求助10
10秒前
zxy发布了新的文献求助10
10秒前
七海老祖完成签到,获得积分10
10秒前
10秒前
lllsy完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667772
求助须知:如何正确求助?哪些是违规求助? 4887765
关于积分的说明 15121847
捐赠科研通 4826643
什么是DOI,文献DOI怎么找? 2584209
邀请新用户注册赠送积分活动 1538157
关于科研通互助平台的介绍 1496386