Deep learning models based on hyperspectral data and time-series phenotypes for predicting quality attributes in lettuces under water stress

高光谱成像 残余物 人工智能 深度学习 计算机科学 偏最小二乘回归 人工神经网络 机器学习 回归 循环神经网络 模式识别(心理学) 数据挖掘 数学 统计 算法
作者
S.K. Yu,Jiangchuan Fan,Xianju Lu,Weiliang Wen,Song Shao,Dong Liang,Xiaozeng Yang,Xinyu Guo,Chunjiang Zhao
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:211: 108034-108034 被引量:28
标识
DOI:10.1016/j.compag.2023.108034
摘要

Efficiently analyzing the relationship between plant phenotypes, quality, and resistance remains challenging. In this study, deep learning models based on hyperspectral data and time-series phenotypes from the high-throughput plant phenotyping (HTPP) platform were proposed to predict quality attributes of lettuce under water stress, including SSC, pH value, nitrate (NO3–), and calcium (Ca2+). First, deep learning models were developed using the Inception module and raw hyperspectral data to non-destructively predict the above quality attributes. In addition, partial least squares regression (PLSR) and support vector regression (SVR) were used to develop prediction models to evaluate performance of the Inception module. Second, the residual and attention modules were implemented to enhance performance of the Inception module. Third, time-series phenotypes were fed into four recurrent neural networks (RNNs), such as TimeDistributed (TD), long short-term memory (LSTM), Gated Recurrent Unit (GRU), and Bidirectional RNN (BRNN) and combined with the optimal deep learning models based on hyperspectral data to enhance prediction precision. The optimal performance of the Inception-residual-attention-TD model was achieved with Rp2 of 0.8900 and 0.9435 for SSC and NO3–, respectively. The Inception-residual-TD model with Rp2 of 0.9583 provided the most accurate pH value prediction. With Rp2 of 0.8716, the Inception-attention-LSTM model provided the most accurate prediction of Ca2+. Meanwhile, the Inception-residual-TD model was used to detect water stress, producing an Accuracyp of 98.86%. The Inception-residual model based on pixel-wise hyperspectral data was used to visualize the spatial distribution of pH value, and the distribution map was used to detect early water stress. The results indicate that deep learning models can use hyperspectral data and time-series phenotypes to predict lettuce quality attributes and water stress in a non-destructive manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小书包完成签到,获得积分10
刚刚
故笺发布了新的文献求助10
1秒前
1秒前
科研通AI6应助大方的凌波采纳,获得10
1秒前
Sisyphus完成签到,获得积分10
2秒前
MIAAAO完成签到,获得积分10
2秒前
小蛇玩发布了新的文献求助10
2秒前
科研人发布了新的文献求助10
2秒前
科研通AI2S应助zsy采纳,获得10
2秒前
科研通AI6应助进步采纳,获得10
3秒前
4秒前
科研通AI2S应助zifeimo采纳,获得10
4秒前
满满完成签到 ,获得积分10
5秒前
5秒前
科研通AI6应助简单的幻儿采纳,获得10
5秒前
5秒前
宸5931完成签到,获得积分10
6秒前
6秒前
6秒前
CDN完成签到,获得积分20
7秒前
英俊的铭应助快乐采纳,获得10
7秒前
虚幻双双发布了新的文献求助10
7秒前
Blank完成签到,获得积分10
7秒前
7秒前
希望天下0贩的0应助lx采纳,获得10
7秒前
大方依玉完成签到 ,获得积分10
8秒前
8秒前
小马甲应助charm12采纳,获得10
9秒前
西部牛仔发布了新的文献求助10
9秒前
9秒前
大个应助fanicky采纳,获得10
10秒前
10秒前
可不关注了科研通微信公众号
10秒前
七七发布了新的文献求助10
10秒前
orixero应助Xinwen0322采纳,获得10
10秒前
ZC完成签到,获得积分10
11秒前
书雪发布了新的文献求助10
11秒前
俞若枫完成签到,获得积分0
11秒前
今后应助wu采纳,获得10
11秒前
可靠之玉发布了新的文献求助10
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646