A solution to the stagnation of multi-verse optimization: An efficient method for breast cancer pathologic images segmentation

计算机科学 局部最优 分割 元启发式 图像分割 熵(时间箭头) 局部搜索(优化) 直方图 算法 人口 数学优化 人工智能 模式识别(心理学) 数学 图像(数学) 社会学 人口学 物理 量子力学
作者
Han Yan,Weibin Chen,Ali Asghar Heidari,Huiling Chen,Xin Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:86: 105208-105208 被引量:10
标识
DOI:10.1016/j.bspc.2023.105208
摘要

The multi-verse optimizer (MVO) algorithm has been applied to image segmentation, feature selection, engineering problems, and many other fields. MVO, like other metaheuristic algorithms, still has shortcomings, such as poor convergence speed and quickly falling into local optimum. To address these concerns, this paper proposes CBQMVO, extending the original MVO algorithm with three strategies: covariance matrix adaptation strategy (CMAES), biogeography-based learning strategy (BLS), quasi-reflected and quasi-opposition strategy (QROS). CMAES can make the algorithm approach quickly the current local optimal solution and accelerate the convergence. BLS can enrich the population’s diversity to discourage prematurely and assist the algorithm in jumping out of the local optimum. QROS can increase the probability of search particles falling near the optimal solution. A set of experiments were conducted to evaluate the performance of the CBQMVO. First, the original algorithm comparison experiment on IEEE CEC2014 includes strategy comparison, dimension comparison, exploration/exploitation balance, and population diversity experiments. Then, the advanced algorithm comparison experiment was carried out on IEEE CEC 2014. Furthermore, the champion algorithm comparison experiment was conducted on IEEE CEC2017 and IEEE CEC2020. A series of comparative experimental data demonstrate that CBQMVO has high performance, especially on some unimodal and complex competition functions. In addition, this paper also applied CBQMVO to implement Renyi’s entropy multilevel threshold image segmentation based on the non-local mean 2D histogram (RMIS-2D) on breast cancer pathologic images. Compared with other metaheuristic algorithms and Kapur’s entropy image segmentation, the proposed scheme in this paper has a better segmentation effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可耐的嫣娆完成签到 ,获得积分10
1秒前
1秒前
余方昆关注了科研通微信公众号
2秒前
pistachio发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
儒雅致远发布了新的文献求助10
3秒前
马康辉应助1210xi采纳,获得10
3秒前
儒雅书桃发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
xiaofan完成签到,获得积分10
5秒前
5秒前
畅快的荟完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
xl发布了新的文献求助10
8秒前
畅快的荟发布了新的文献求助10
9秒前
HT发布了新的文献求助30
9秒前
9秒前
SevaC完成签到,获得积分10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
佳佳应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
cx发布了新的文献求助10
10秒前
水木应助科研通管家采纳,获得20
10秒前
李爱国应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
Evelyn完成签到,获得积分10
11秒前
xuxingxing发布了新的文献求助10
11秒前
12秒前
白色风车发布了新的文献求助10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979791
求助须知:如何正确求助?哪些是违规求助? 3523813
关于积分的说明 11219007
捐赠科研通 3261341
什么是DOI,文献DOI怎么找? 1800573
邀请新用户注册赠送积分活动 879179
科研通“疑难数据库(出版商)”最低求助积分说明 807193