A solution to the stagnation of multi-verse optimization: An efficient method for breast cancer pathologic images segmentation

计算机科学 局部最优 分割 元启发式 图像分割 熵(时间箭头) 局部搜索(优化) 直方图 算法 人口 数学优化 人工智能 模式识别(心理学) 数学 图像(数学) 物理 人口学 量子力学 社会学
作者
Han Yan,Weibin Chen,Ali Asghar Heidari,Huiling Chen,Xin Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:86: 105208-105208 被引量:10
标识
DOI:10.1016/j.bspc.2023.105208
摘要

The multi-verse optimizer (MVO) algorithm has been applied to image segmentation, feature selection, engineering problems, and many other fields. MVO, like other metaheuristic algorithms, still has shortcomings, such as poor convergence speed and quickly falling into local optimum. To address these concerns, this paper proposes CBQMVO, extending the original MVO algorithm with three strategies: covariance matrix adaptation strategy (CMAES), biogeography-based learning strategy (BLS), quasi-reflected and quasi-opposition strategy (QROS). CMAES can make the algorithm approach quickly the current local optimal solution and accelerate the convergence. BLS can enrich the population’s diversity to discourage prematurely and assist the algorithm in jumping out of the local optimum. QROS can increase the probability of search particles falling near the optimal solution. A set of experiments were conducted to evaluate the performance of the CBQMVO. First, the original algorithm comparison experiment on IEEE CEC2014 includes strategy comparison, dimension comparison, exploration/exploitation balance, and population diversity experiments. Then, the advanced algorithm comparison experiment was carried out on IEEE CEC 2014. Furthermore, the champion algorithm comparison experiment was conducted on IEEE CEC2017 and IEEE CEC2020. A series of comparative experimental data demonstrate that CBQMVO has high performance, especially on some unimodal and complex competition functions. In addition, this paper also applied CBQMVO to implement Renyi’s entropy multilevel threshold image segmentation based on the non-local mean 2D histogram (RMIS-2D) on breast cancer pathologic images. Compared with other metaheuristic algorithms and Kapur’s entropy image segmentation, the proposed scheme in this paper has a better segmentation effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
领导范儿应助堪祥采纳,获得10
刚刚
香蕉觅云应助贾克斯采纳,获得10
刚刚
在水一方应助麦麦采纳,获得10
1秒前
炒饭完成签到,获得积分10
1秒前
陌生麻薯包完成签到,获得积分10
1秒前
2秒前
一米七的小柯基完成签到,获得积分10
2秒前
李爱国应助xfwd采纳,获得20
2秒前
4秒前
直率的芫发布了新的文献求助10
4秒前
打打应助碧蓝丹烟采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
wei发布了新的文献求助30
5秒前
Ava应助浅笑_随风采纳,获得10
6秒前
科研通AI6应助蓝风铃采纳,获得20
7秒前
lily336699完成签到,获得积分10
8秒前
只想发SCI完成签到,获得积分10
8秒前
8秒前
向小阳发布了新的文献求助10
9秒前
爱喝可乐完成签到,获得积分10
9秒前
10秒前
nll完成签到,获得积分10
10秒前
111完成签到,获得积分10
10秒前
小易发布了新的文献求助10
11秒前
12秒前
12秒前
14秒前
暂时想不到昵称完成签到,获得积分10
14秒前
Robin发布了新的文献求助10
14秒前
CipherSage应助bcl采纳,获得10
14秒前
15秒前
16秒前
鹿七七啊完成签到,获得积分10
16秒前
18秒前
xfwd发布了新的文献求助20
18秒前
FOOG发布了新的文献求助10
18秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469301
求助须知:如何正确求助?哪些是违规求助? 4572424
关于积分的说明 14335737
捐赠科研通 4499324
什么是DOI,文献DOI怎么找? 2465014
邀请新用户注册赠送积分活动 1453542
关于科研通互助平台的介绍 1428051