亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A solution to the stagnation of multi-verse optimization: An efficient method for breast cancer pathologic images segmentation

计算机科学 局部最优 分割 元启发式 图像分割 熵(时间箭头) 局部搜索(优化) 直方图 算法 人口 数学优化 人工智能 模式识别(心理学) 数学 图像(数学) 社会学 人口学 物理 量子力学
作者
Han Yan,Weibin Chen,Ali Asghar Heidari,Huiling Chen,Xin Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:86: 105208-105208 被引量:10
标识
DOI:10.1016/j.bspc.2023.105208
摘要

The multi-verse optimizer (MVO) algorithm has been applied to image segmentation, feature selection, engineering problems, and many other fields. MVO, like other metaheuristic algorithms, still has shortcomings, such as poor convergence speed and quickly falling into local optimum. To address these concerns, this paper proposes CBQMVO, extending the original MVO algorithm with three strategies: covariance matrix adaptation strategy (CMAES), biogeography-based learning strategy (BLS), quasi-reflected and quasi-opposition strategy (QROS). CMAES can make the algorithm approach quickly the current local optimal solution and accelerate the convergence. BLS can enrich the population’s diversity to discourage prematurely and assist the algorithm in jumping out of the local optimum. QROS can increase the probability of search particles falling near the optimal solution. A set of experiments were conducted to evaluate the performance of the CBQMVO. First, the original algorithm comparison experiment on IEEE CEC2014 includes strategy comparison, dimension comparison, exploration/exploitation balance, and population diversity experiments. Then, the advanced algorithm comparison experiment was carried out on IEEE CEC 2014. Furthermore, the champion algorithm comparison experiment was conducted on IEEE CEC2017 and IEEE CEC2020. A series of comparative experimental data demonstrate that CBQMVO has high performance, especially on some unimodal and complex competition functions. In addition, this paper also applied CBQMVO to implement Renyi’s entropy multilevel threshold image segmentation based on the non-local mean 2D histogram (RMIS-2D) on breast cancer pathologic images. Compared with other metaheuristic algorithms and Kapur’s entropy image segmentation, the proposed scheme in this paper has a better segmentation effect.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月光发布了新的文献求助10
7秒前
13秒前
滕皓轩完成签到 ,获得积分10
24秒前
无花果应助白华苍松采纳,获得10
25秒前
29秒前
BowieHuang应助科研通管家采纳,获得10
33秒前
52秒前
003完成签到,获得积分10
1分钟前
宫戚戚完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
002完成签到,获得积分10
1分钟前
1分钟前
1分钟前
完美世界应助无风采纳,获得10
1分钟前
科研通AI6应助明亮囧采纳,获得10
1分钟前
George发布了新的文献求助10
1分钟前
001完成签到,获得积分0
1分钟前
慕青应助George采纳,获得30
2分钟前
2分钟前
2分钟前
wallacetan完成签到,获得积分10
2分钟前
无风发布了新的文献求助10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
张梅娟发布了新的文献求助10
2分钟前
3分钟前
George发布了新的文献求助30
3分钟前
张梅娟完成签到,获得积分10
3分钟前
3分钟前
小鸟芋圆露露完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
烟花应助白华苍松采纳,获得10
4分钟前
4分钟前
George发布了新的文献求助10
4分钟前
星辰大海应助龙龍泷采纳,获得10
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590496
求助须知:如何正确求助?哪些是违规求助? 4674778
关于积分的说明 14795276
捐赠科研通 4632436
什么是DOI,文献DOI怎么找? 2532781
邀请新用户注册赠送积分活动 1501293
关于科研通互助平台的介绍 1468676