Consumer-oriented smart dynamic detection of fresh food quality: recent advances and future prospects

食品质量 质量(理念) 计算机科学 新兴技术 风险分析(工程) 生化工程 生物技术 业务 工程类 人工智能 食品科学 生物 认识论 哲学 化学
作者
Dongbei Shen,Min Zhang,Arun S. Mujumdar,Yamei Ma
出处
期刊:Critical Reviews in Food Science and Nutrition [Informa]
卷期号:64 (30): 11281-11301 被引量:8
标识
DOI:10.1080/10408398.2023.2235703
摘要

Since fresh foods include a significant amount of water, fat, and protein, it is more likely to become infected by microorganisms causing a major loss of quality. Traditional detection techniques are less able to meet customer expectations owing to the limitations of high cost, slow response time, and inability to permit dynamic monitoring. Intelligent non-destructive detection technologies have emerged in recent years, which offer the advantages of small size and fast response at low cost. However, dynamic monitoring of fresh food quality based on intelligent detection technologies on the consumer side has not been rigorously evaluated yet. This paper discussed the application of intelligent detection technologies based on the consumer side in the dynamic monitoring of fresh food freshness, microorganisms, food additives, and pesticide residues. Furthermore, the application of intelligent detection technologies combined with smartphones for quality monitoring and detection of fresh foods is evaluated. Moreover, the challenges and development trends of intelligent fresh food quality detection technologies are also discussed. Intelligent detection technologies based on the consumer side are designed to detect in real-time the quality of fresh food through visual color changes in combination with smartphones. This paper provides ideas and recommendations for the application of intelligent detection technologies based on the consumer side in food quality detection/monitoring and future research trends.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极的誉完成签到,获得积分20
2秒前
称心梦之发布了新的文献求助10
2秒前
NexusExplorer应助xiaoqi采纳,获得10
3秒前
科研通AI2S应助czx采纳,获得20
3秒前
Amb1tionG完成签到,获得积分10
3秒前
初心路发布了新的文献求助10
3秒前
ChenkLuo完成签到,获得积分10
4秒前
NexusExplorer应助JJJJJJ采纳,获得10
5秒前
5秒前
123Y完成签到,获得积分10
5秒前
景行行止发布了新的文献求助10
5秒前
genomed应助免疫与代谢研究采纳,获得30
6秒前
xsc完成签到,获得积分10
6秒前
7秒前
7秒前
坚强亦丝应助好丫水果采纳,获得10
7秒前
魁梧的海秋应助好丫水果采纳,获得10
7秒前
狂野飞柏完成签到 ,获得积分10
7秒前
ppg123应助积极的誉采纳,获得10
7秒前
SciGPT应助gane采纳,获得10
7秒前
剑指天涯完成签到,获得积分10
8秒前
天很蓝完成签到,获得积分10
8秒前
梨梨梨发布了新的文献求助10
8秒前
8秒前
甄的艾你完成签到,获得积分10
9秒前
Kirisame完成签到,获得积分10
9秒前
youzi完成签到,获得积分10
10秒前
11秒前
无语发布了新的文献求助10
11秒前
情怀应助活力热狗采纳,获得10
11秒前
larder完成签到 ,获得积分10
11秒前
nininidoc完成签到,获得积分10
12秒前
ppg123应助积极的誉采纳,获得10
12秒前
12秒前
长歌完成签到 ,获得积分10
12秒前
xsc发布了新的文献求助30
12秒前
曾小莹完成签到,获得积分10
13秒前
14秒前
15122303完成签到,获得积分10
15秒前
秀丽烨霖应助称心梦之采纳,获得10
16秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257848
求助须知:如何正确求助?哪些是违规求助? 2899735
关于积分的说明 8307278
捐赠科研通 2568985
什么是DOI,文献DOI怎么找? 1395394
科研通“疑难数据库(出版商)”最低求助积分说明 653074
邀请新用户注册赠送积分活动 630933