An Overview of Speech Enhancement Based on Deep Learning Techniques

语音增强 计算机科学 Mel倒谱 语音识别 倒谱 自相关 人工神经网络 噪音(视频) 深度学习 语音处理 背景噪声 人工智能 降噪 特征提取 数学 电信 统计 图像(数学)
作者
Chaitanya Jannu,Sunny Dayal Vanambathina
出处
期刊:International Journal of Image and Graphics [World Scientific]
卷期号:25 (01) 被引量:24
标识
DOI:10.1142/s0219467825500019
摘要

Recent years have seen a significant amount of studies in the area of speech enhancement. This review looks at several speech improvement methods as well as Deep Neural Network (DNN) functions in speech enhancement. Speech transmissions are frequently distorted by ambient noise, background noise, and reverberations. There are processing methods, such as Short-time Fourier Transform, Short-time Autocorrelation, and Short-time Energy (STE), that can be used to enhance speech. To reduce speech noise, features such as the Mel-Frequency Cepstral Coefficients (MFCCs), Logarithmic Power Spectrum (LPS), and Gammatone Frequency Cepstral Coefficients (GFCCs) can be retrieved and input to a DNN. DNN is essential to speech improvement since it builds models using a lot of training data and evaluates the efficacy of the enhanced speech using certain performance metrics. Since the beginning of deep learning publications in 1993, a variety of speech enhancement methods have been examined in this study. This review provides a thorough examination of the several neural network topologies, training algorithms, activation functions, training targets, acoustic features, and databases that were employed for the job of speech enhancement and were gathered from various articles published between 1993 and 2022.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助可爱绮采纳,获得10
2秒前
fuiee完成签到,获得积分10
7秒前
陈谨完成签到 ,获得积分10
7秒前
9秒前
小巧的寻双完成签到,获得积分10
10秒前
魏魏驳回了慕青应助
15秒前
张宏磊发布了新的文献求助10
15秒前
Longfei发布了新的文献求助10
19秒前
22秒前
23秒前
慕青应助张宏磊采纳,获得10
25秒前
迷茫菜ji完成签到 ,获得积分10
25秒前
27秒前
28秒前
36秒前
JamesPei应助猪猪hero采纳,获得10
40秒前
善学以致用应助废寝忘食采纳,获得10
41秒前
dai完成签到 ,获得积分20
42秒前
43秒前
Kevin发布了新的文献求助10
45秒前
46秒前
废寝忘食完成签到,获得积分10
47秒前
小二郎应助隐形的凡阳采纳,获得10
49秒前
废寝忘食发布了新的文献求助10
51秒前
56秒前
pharpan发布了新的文献求助30
58秒前
59秒前
1分钟前
1分钟前
可爱绮发布了新的文献求助10
1分钟前
浮游应助金银花采纳,获得10
1分钟前
越明年发布了新的文献求助10
1分钟前
魏魏给魏魏的求助进行了留言
1分钟前
1分钟前
猪猪hero发布了新的文献求助10
1分钟前
测量幽冥完成签到 ,获得积分10
1分钟前
Jere发布了新的文献求助20
1分钟前
白开水发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557589
求助须知:如何正确求助?哪些是违规求助? 4642695
关于积分的说明 14668800
捐赠科研通 4584089
什么是DOI,文献DOI怎么找? 2514564
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459512