An Overview of Speech Enhancement Based on Deep Learning Techniques

语音增强 计算机科学 Mel倒谱 语音识别 倒谱 自相关 人工神经网络 噪音(视频) 深度学习 语音处理 背景噪声 人工智能 降噪 特征提取 数学 电信 统计 图像(数学)
作者
Chaitanya Jannu,Sunny Dayal Vanambathina
出处
期刊:International Journal of Image and Graphics [World Scientific]
被引量:6
标识
DOI:10.1142/s0219467825500019
摘要

Recent years have seen a significant amount of studies in the area of speech enhancement. This review looks at several speech improvement methods as well as Deep Neural Network (DNN) functions in speech enhancement. Speech transmissions are frequently distorted by ambient noise, background noise, and reverberations. There are processing methods, such as Short-time Fourier Transform, Short-time Autocorrelation, and Short-time Energy (STE), that can be used to enhance speech. To reduce speech noise, features such as the Mel-Frequency Cepstral Coefficients (MFCCs), Logarithmic Power Spectrum (LPS), and Gammatone Frequency Cepstral Coefficients (GFCCs) can be retrieved and input to a DNN. DNN is essential to speech improvement since it builds models using a lot of training data and evaluates the efficacy of the enhanced speech using certain performance metrics. Since the beginning of deep learning publications in 1993, a variety of speech enhancement methods have been examined in this study. This review provides a thorough examination of the several neural network topologies, training algorithms, activation functions, training targets, acoustic features, and databases that were employed for the job of speech enhancement and were gathered from various articles published between 1993 and 2022.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨漫空巷花完成签到,获得积分10
刚刚
lizhihahaha发布了新的文献求助10
刚刚
piaopiaoran完成签到,获得积分20
1秒前
lvsehx发布了新的文献求助10
1秒前
1秒前
weng发布了新的文献求助30
3秒前
李健应助鼠鼠想养猫采纳,获得10
4秒前
5秒前
完美世界应助搞怪的千万采纳,获得10
5秒前
迷路荷花发布了新的文献求助10
5秒前
柯米克发布了新的文献求助10
5秒前
无花果应助帅气的宽采纳,获得10
6秒前
JW发布了新的文献求助10
6秒前
科研通AI5应助姜粒采纳,获得10
6秒前
7秒前
帅气抽屉完成签到,获得积分10
7秒前
111发布了新的文献求助10
8秒前
缓慢思枫完成签到,获得积分10
8秒前
8秒前
无聊的仙人掌完成签到,获得积分20
9秒前
Ava应助科研吗喽采纳,获得10
10秒前
今后应助暮桉采纳,获得10
10秒前
田様应助shanks采纳,获得10
10秒前
10秒前
Bautista发布了新的文献求助10
11秒前
12秒前
小马甲应助lizhihahaha采纳,获得10
12秒前
行走家发布了新的文献求助10
13秒前
14秒前
Hydro发布了新的文献求助10
14秒前
16秒前
ninalee发布了新的文献求助10
16秒前
隐形曼青应助柯米克采纳,获得10
17秒前
帅气的宽发布了新的文献求助10
19秒前
19秒前
19秒前
思源应助haitun采纳,获得10
20秒前
Q123ba叭发布了新的文献求助10
20秒前
bkagyin应助Hydro采纳,获得10
21秒前
缪连虎发布了新的文献求助10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligonucleotide Synthesis: a Practical Approach 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3590184
求助须知:如何正确求助?哪些是违规求助? 3158575
关于积分的说明 9520512
捐赠科研通 2861581
什么是DOI,文献DOI怎么找? 1572636
邀请新用户注册赠送积分活动 738020
科研通“疑难数据库(出版商)”最低求助积分说明 722636