An Overview of Speech Enhancement Based on Deep Learning Techniques

语音增强 计算机科学 Mel倒谱 语音识别 倒谱 自相关 人工神经网络 噪音(视频) 深度学习 语音处理 背景噪声 人工智能 降噪 特征提取 数学 电信 统计 图像(数学)
作者
Chaitanya Jannu,Sunny Dayal Vanambathina
出处
期刊:International Journal of Image and Graphics [World Scientific]
卷期号:25 (01) 被引量:24
标识
DOI:10.1142/s0219467825500019
摘要

Recent years have seen a significant amount of studies in the area of speech enhancement. This review looks at several speech improvement methods as well as Deep Neural Network (DNN) functions in speech enhancement. Speech transmissions are frequently distorted by ambient noise, background noise, and reverberations. There are processing methods, such as Short-time Fourier Transform, Short-time Autocorrelation, and Short-time Energy (STE), that can be used to enhance speech. To reduce speech noise, features such as the Mel-Frequency Cepstral Coefficients (MFCCs), Logarithmic Power Spectrum (LPS), and Gammatone Frequency Cepstral Coefficients (GFCCs) can be retrieved and input to a DNN. DNN is essential to speech improvement since it builds models using a lot of training data and evaluates the efficacy of the enhanced speech using certain performance metrics. Since the beginning of deep learning publications in 1993, a variety of speech enhancement methods have been examined in this study. This review provides a thorough examination of the several neural network topologies, training algorithms, activation functions, training targets, acoustic features, and databases that were employed for the job of speech enhancement and were gathered from various articles published between 1993 and 2022.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李燕伟完成签到 ,获得积分10
刚刚
好好发布了新的文献求助10
1秒前
snowpie完成签到 ,获得积分10
1秒前
2秒前
活泼山雁完成签到,获得积分10
2秒前
rain完成签到,获得积分10
2秒前
2秒前
大方的笑萍完成签到 ,获得积分10
2秒前
2秒前
伶俐如冰完成签到,获得积分10
3秒前
Hello应助Netsky采纳,获得10
3秒前
不甜完成签到,获得积分10
3秒前
3秒前
3秒前
啦啦啦啦啦完成签到,获得积分10
3秒前
Wwx完成签到 ,获得积分10
4秒前
小二郎应助机灵若魔采纳,获得10
4秒前
memedaaaah完成签到,获得积分10
4秒前
4秒前
汪格森完成签到,获得积分20
4秒前
5秒前
丸子完成签到,获得积分10
5秒前
5秒前
5秒前
Yuanfang123完成签到,获得积分10
5秒前
甜甜的寻真完成签到,获得积分10
6秒前
小米完成签到,获得积分10
6秒前
7秒前
啦啦啦123发布了新的文献求助10
7秒前
桐桐应助ABC熊ABC采纳,获得10
7秒前
Haonan完成签到,获得积分10
8秒前
8秒前
8秒前
科yt完成签到,获得积分10
9秒前
饱满芷卉完成签到,获得积分10
9秒前
Zkxxxx完成签到,获得积分10
9秒前
9秒前
普鲁卡因发布了新的文献求助10
9秒前
zzz发布了新的文献求助30
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017