Recognition of citrus fruit and planning the robotic picking sequence in orchards

果园 计算机科学 最小边界框 跳跃式监视 序列(生物学) 块(置换群论) 人工智能 运动规划 碰撞 评价函数 机器人 算法 数学 遗传学 几何学 计算机安全 园艺 图像(数学) 生物
作者
Chunmao Li,Wen-Long Ma,Fang Liu,Bin Fang,Hui Lu,Yue Sun
出处
期刊:Signal, Image and Video Processing [Springer Science+Business Media]
卷期号:17 (8): 4425-4434 被引量:6
标识
DOI:10.1007/s11760-023-02676-y
摘要

To improve the operational efficiency of and to prevent possible collision damage in the picking of citruses by robots in densely planted complex orchards, this study proposes an algorithm based on YOLOv5 for recognizing citruses and planning a picking sequence. First, the convolutional block attention module is embedded into YOLOv5 to improve the feature extraction capability of the network and mitigate missed detection of occluded targets and small targets. Simultaneously, the bounding loss function is optimized to improve the positioning accuracy of the bounding box. This combined model is used to recognize and localize citruses. Then, a three-dimensional model of citrus fruit was established, and an adaptive pheromone concentration updating mechanism was introduced on the basis of the ant colony algorithm to dynamically judge the picking order of citruses and determine the optimal picking sequence. We show the quantitative and qualitative results of our method in comparison with the previous methods. In tests, the F1-score of this method for citrus in a densely planted environment was 92.41%, which is a 2.81% improvement compared to YOLOv5. Compared to stochastic planning, the proposed method can plan the picking sequence of citruses in the field of view in advance and shorten the picking path. In addition, extensive sequence planning experiments on other fruits validate the superiority of the proposed method. Therefore, the method in this paper may provide new solutions for citrus anti-collision picking and orchard yield forecasting and new ideas for the intelligent fruit industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小赵发布了新的文献求助10
刚刚
刚刚
易俊完成签到,获得积分10
刚刚
秋风晚来意完成签到,获得积分10
1秒前
天天快乐应助xxl采纳,获得10
1秒前
慕青应助xxl采纳,获得10
1秒前
大个应助xxl采纳,获得10
1秒前
华仔应助xxl采纳,获得10
1秒前
沙克几十块完成签到,获得积分10
1秒前
隐形曼青应助xxl采纳,获得10
1秒前
粒粒完成签到,获得积分10
1秒前
香蕉觅云应助有魅力丝采纳,获得10
1秒前
CHAI完成签到 ,获得积分10
1秒前
2秒前
YaoZhang完成签到 ,获得积分10
2秒前
光亮语梦完成签到 ,获得积分10
2秒前
3秒前
3秒前
天熙完成签到,获得积分10
3秒前
Letter发布了新的文献求助10
3秒前
CipherSage应助暴龙兽采纳,获得10
4秒前
4秒前
王小迪发布了新的文献求助10
4秒前
Random完成签到,获得积分10
4秒前
愤怒的咖啡完成签到,获得积分10
4秒前
mx应助超级的笑天采纳,获得10
5秒前
5秒前
Yiyyan完成签到,获得积分10
5秒前
粥粥完成签到,获得积分10
5秒前
啊娴子发布了新的文献求助10
6秒前
大飞飞发布了新的文献求助30
6秒前
小甜完成签到 ,获得积分10
6秒前
7秒前
窝窝头完成签到,获得积分10
7秒前
粒粒发布了新的文献求助10
7秒前
瑕不掩瑜完成签到,获得积分10
8秒前
科研通AI2S应助Random采纳,获得10
8秒前
8秒前
优秀扬完成签到,获得积分10
9秒前
婷婷完成签到,获得积分10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953748
求助须知:如何正确求助?哪些是违规求助? 3499604
关于积分的说明 11096363
捐赠科研通 3230143
什么是DOI,文献DOI怎么找? 1785894
邀请新用户注册赠送积分活动 869656
科研通“疑难数据库(出版商)”最低求助积分说明 801498