Recognition of citrus fruit and planning the robotic picking sequence in orchards

果园 计算机科学 最小边界框 跳跃式监视 序列(生物学) 块(置换群论) 人工智能 运动规划 碰撞 评价函数 机器人 算法 数学 遗传学 几何学 计算机安全 园艺 图像(数学) 生物
作者
Chunmao Li,Wing-Kin Ma,Fang Liu,Bin Fang,Hui Lu,Yuan Sun
出处
期刊:Signal, Image and Video Processing [Springer Nature]
卷期号:17 (8): 4425-4434
标识
DOI:10.1007/s11760-023-02676-y
摘要

To improve the operational efficiency of and to prevent possible collision damage in the picking of citruses by robots in densely planted complex orchards, this study proposes an algorithm based on YOLOv5 for recognizing citruses and planning a picking sequence. First, the convolutional block attention module is embedded into YOLOv5 to improve the feature extraction capability of the network and mitigate missed detection of occluded targets and small targets. Simultaneously, the bounding loss function is optimized to improve the positioning accuracy of the bounding box. This combined model is used to recognize and localize citruses. Then, a three-dimensional model of citrus fruit was established, and an adaptive pheromone concentration updating mechanism was introduced on the basis of the ant colony algorithm to dynamically judge the picking order of citruses and determine the optimal picking sequence. We show the quantitative and qualitative results of our method in comparison with the previous methods. In tests, the F1-score of this method for citrus in a densely planted environment was 92.41%, which is a 2.81% improvement compared to YOLOv5. Compared to stochastic planning, the proposed method can plan the picking sequence of citruses in the field of view in advance and shorten the picking path. In addition, extensive sequence planning experiments on other fruits validate the superiority of the proposed method. Therefore, the method in this paper may provide new solutions for citrus anti-collision picking and orchard yield forecasting and new ideas for the intelligent fruit industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
穿堂风发布了新的文献求助10
1秒前
dfsf完成签到,获得积分10
2秒前
hh完成签到,获得积分10
3秒前
不知道发布了新的文献求助10
3秒前
wzl完成签到,获得积分10
4秒前
4秒前
yyyy发布了新的文献求助10
5秒前
Ava应助穿堂风采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
cyrong应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
从容芮应助科研通管家采纳,获得20
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
从容芮应助科研通管家采纳,获得30
8秒前
顺心绮兰完成签到,获得积分10
8秒前
8秒前
8秒前
10秒前
Lucas应助dfsf采纳,获得10
11秒前
11秒前
12秒前
T1unkillable发布了新的文献求助10
13秒前
一只獾獾应助Elary采纳,获得10
14秒前
Hutch发布了新的文献求助10
15秒前
专注的筝发布了新的文献求助10
15秒前
漂亮柚子发布了新的文献求助10
16秒前
郭凯丽发布了新的文献求助30
17秒前
自由质数发布了新的文献求助10
19秒前
20秒前
万事顺遂完成签到,获得积分10
22秒前
西西弗斯完成签到 ,获得积分10
22秒前
大模型应助专注的筝采纳,获得10
22秒前
24秒前
黄友群完成签到 ,获得积分10
24秒前
独特的夜阑完成签到 ,获得积分10
25秒前
222发布了新的文献求助10
26秒前
27秒前
李杰发布了新的文献求助10
28秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139150
求助须知:如何正确求助?哪些是违规求助? 2790129
关于积分的说明 7793840
捐赠科研通 2446527
什么是DOI,文献DOI怎么找? 1301209
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109