Recognition of citrus fruit and planning the robotic picking sequence in orchards

果园 计算机科学 最小边界框 跳跃式监视 序列(生物学) 块(置换群论) 人工智能 运动规划 碰撞 评价函数 机器人 算法 数学 图像(数学) 几何学 园艺 生物 遗传学 计算机安全
作者
Chunmao Li,Wen-Long Ma,Fang Liu,Bin Fang,Hui Lu,Yue Sun
出处
期刊:Signal, Image and Video Processing [Springer Science+Business Media]
卷期号:17 (8): 4425-4434 被引量:6
标识
DOI:10.1007/s11760-023-02676-y
摘要

To improve the operational efficiency of and to prevent possible collision damage in the picking of citruses by robots in densely planted complex orchards, this study proposes an algorithm based on YOLOv5 for recognizing citruses and planning a picking sequence. First, the convolutional block attention module is embedded into YOLOv5 to improve the feature extraction capability of the network and mitigate missed detection of occluded targets and small targets. Simultaneously, the bounding loss function is optimized to improve the positioning accuracy of the bounding box. This combined model is used to recognize and localize citruses. Then, a three-dimensional model of citrus fruit was established, and an adaptive pheromone concentration updating mechanism was introduced on the basis of the ant colony algorithm to dynamically judge the picking order of citruses and determine the optimal picking sequence. We show the quantitative and qualitative results of our method in comparison with the previous methods. In tests, the F1-score of this method for citrus in a densely planted environment was 92.41%, which is a 2.81% improvement compared to YOLOv5. Compared to stochastic planning, the proposed method can plan the picking sequence of citruses in the field of view in advance and shorten the picking path. In addition, extensive sequence planning experiments on other fruits validate the superiority of the proposed method. Therefore, the method in this paper may provide new solutions for citrus anti-collision picking and orchard yield forecasting and new ideas for the intelligent fruit industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cccccgggmmm关注了科研通微信公众号
1秒前
希文完成签到,获得积分10
2秒前
3秒前
David完成签到,获得积分10
3秒前
洁净的嘉熙完成签到,获得积分10
4秒前
4秒前
Ava应助lxy采纳,获得30
5秒前
www完成签到,获得积分10
7秒前
叶子完成签到,获得积分10
7秒前
8秒前
爱吃肉完成签到,获得积分10
8秒前
daydream关注了科研通微信公众号
8秒前
任栎名完成签到,获得积分20
10秒前
zeng完成签到,获得积分10
10秒前
10秒前
hewd3发布了新的文献求助10
13秒前
Jarvis完成签到,获得积分10
14秒前
orixero应助愤怒的山兰采纳,获得10
14秒前
14秒前
14秒前
意面米助发布了新的文献求助10
15秒前
16秒前
17秒前
xixi发布了新的文献求助10
19秒前
21秒前
21秒前
彭于晏应助hewd3采纳,获得10
22秒前
popvich应助Azlne采纳,获得10
22秒前
wanci应助科研通管家采纳,获得10
23秒前
李健应助科研通管家采纳,获得10
23秒前
干饭虫应助科研通管家采纳,获得10
23秒前
Rita应助科研通管家采纳,获得10
23秒前
英姑应助科研通管家采纳,获得10
23秒前
干饭虫应助科研通管家采纳,获得10
23秒前
干饭虫应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
24秒前
杨好圆完成签到,获得积分10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4979699
求助须知:如何正确求助?哪些是违规求助? 4232313
关于积分的说明 13183302
捐赠科研通 4023465
什么是DOI,文献DOI怎么找? 2201316
邀请新用户注册赠送积分活动 1213777
关于科研通互助平台的介绍 1130020