Recognition of citrus fruit and planning the robotic picking sequence in orchards

果园 计算机科学 最小边界框 跳跃式监视 序列(生物学) 块(置换群论) 人工智能 运动规划 碰撞 评价函数 机器人 算法 数学 遗传学 几何学 计算机安全 园艺 图像(数学) 生物
作者
Chunmao Li,Wen-Long Ma,Fang Liu,Bin Fang,Hui Lu,Yue Sun
出处
期刊:Signal, Image and Video Processing [Springer Science+Business Media]
卷期号:17 (8): 4425-4434 被引量:6
标识
DOI:10.1007/s11760-023-02676-y
摘要

To improve the operational efficiency of and to prevent possible collision damage in the picking of citruses by robots in densely planted complex orchards, this study proposes an algorithm based on YOLOv5 for recognizing citruses and planning a picking sequence. First, the convolutional block attention module is embedded into YOLOv5 to improve the feature extraction capability of the network and mitigate missed detection of occluded targets and small targets. Simultaneously, the bounding loss function is optimized to improve the positioning accuracy of the bounding box. This combined model is used to recognize and localize citruses. Then, a three-dimensional model of citrus fruit was established, and an adaptive pheromone concentration updating mechanism was introduced on the basis of the ant colony algorithm to dynamically judge the picking order of citruses and determine the optimal picking sequence. We show the quantitative and qualitative results of our method in comparison with the previous methods. In tests, the F1-score of this method for citrus in a densely planted environment was 92.41%, which is a 2.81% improvement compared to YOLOv5. Compared to stochastic planning, the proposed method can plan the picking sequence of citruses in the field of view in advance and shorten the picking path. In addition, extensive sequence planning experiments on other fruits validate the superiority of the proposed method. Therefore, the method in this paper may provide new solutions for citrus anti-collision picking and orchard yield forecasting and new ideas for the intelligent fruit industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk完成签到,获得积分10
刚刚
1秒前
海边的卡卡罗特完成签到,获得积分10
1秒前
戴衡霞发布了新的文献求助10
1秒前
1秒前
莹莹哒完成签到,获得积分10
2秒前
2秒前
22222发布了新的文献求助30
2秒前
hjyylab发布了新的文献求助10
2秒前
Akim应助笑点低的碧琴采纳,获得10
3秒前
yy发布了新的文献求助10
3秒前
cold寒完成签到,获得积分10
3秒前
魏不不给魏不不的求助进行了留言
3秒前
给我一篇文献吧完成签到 ,获得积分10
4秒前
4秒前
4秒前
syz66628完成签到,获得积分10
5秒前
5秒前
慕青应助乔乔兔采纳,获得10
5秒前
地瓜叶完成签到,获得积分10
5秒前
Shuhe_Gong完成签到 ,获得积分10
5秒前
6秒前
刀刀完成签到,获得积分10
6秒前
ZYSNNNN完成签到,获得积分10
6秒前
科研通AI2S应助shenzhou9采纳,获得10
6秒前
长情诗蕾完成签到,获得积分10
6秒前
白若可依发布了新的文献求助10
6秒前
一轮明月发布了新的文献求助10
6秒前
Cc发布了新的文献求助10
7秒前
Hello应助JXY采纳,获得10
7秒前
打工肥仔完成签到,获得积分0
7秒前
syz66628发布了新的文献求助10
8秒前
小蘑菇应助耍酷小贾采纳,获得10
8秒前
xiaoyu完成签到,获得积分10
8秒前
我蛋挞呢应助leo采纳,获得10
8秒前
qise应助mhq采纳,获得10
9秒前
lanananan完成签到,获得积分10
9秒前
9秒前
刘晓海完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646