Interaction-Aware Planning With Deep Inverse Reinforcement Learning for Human-Like Autonomous Driving in Merge Scenarios

计算机科学 强化学习 合并(版本控制) 人工智能 人机交互 情报检索
作者
Jiangfeng Nan,Weiwen Deng,Ruzheng Zhang,Ying Wang,Rui Zhao,Juan Ding
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 2714-2726 被引量:2
标识
DOI:10.1109/tiv.2023.3298912
摘要

Merge scenarios on highway are often challenging for autonomous driving, due to its lack of sufficient tacit understanding on and subtle interaction with human drivers in the traffic flow. This, as a result, may impose serious safety risks, and often cause traffic jam with autonomous driving. Therefore, human-like autonomous driving becomes important, yet imperative. This paper presents an interaction-aware decision-making and planning method for human-like autonomous driving in merge scenarios. Rather than directly mimicking human behavior, deep inverse reinforcement learning is employed to learn the human-used reward function for decision-making and planning from naturalistic driving data to enhance interpretability and generalizability. To consider the interaction factor, the reward function for planning is utilized to evaluate the joint trajectories of the autonomous driving vehicle (ADV) and traffic vehicles. In contrast to predicting trajectories of traffic vehicles with the fixed trajectory of ADV given by the upstream prediction model, the trajectories of traffic vehicles are predicted by responding to the ADV's behavior in this paper. Additionally, the decision-making module is employed to reduce the solution space of planning via the selection of a proper gap for merging. Both the decision-making and planning algorithms follow a "sampling, evaluation, and selection" framework. After being verified through experiments, the results indicate that the planned trajectories with the presented method are highly similar to those of human drivers. Moreover, compared to the interaction-unaware planning method, the interaction-aware planning method behaves closer to human drivers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
limotong完成签到,获得积分20
刚刚
刚刚
LLL发布了新的文献求助10
1秒前
2秒前
沃研发布了新的文献求助10
2秒前
田様应助juan采纳,获得10
2秒前
平安喜乐完成签到 ,获得积分10
3秒前
LiXii完成签到 ,获得积分10
3秒前
飞0802完成签到,获得积分10
3秒前
天天快乐应助杨震采纳,获得10
3秒前
3秒前
小星星668完成签到,获得积分10
4秒前
虚幻沁发布了新的文献求助10
4秒前
4秒前
文静从雪应助3131879775采纳,获得10
4秒前
爆米花应助wh采纳,获得10
4秒前
4秒前
5秒前
夏青荷完成签到,获得积分10
5秒前
5秒前
外向鞋子完成签到 ,获得积分10
5秒前
lbma完成签到,获得积分10
5秒前
6秒前
彭于晏应助阔达的太阳采纳,获得10
6秒前
6秒前
7秒前
云痴子完成签到 ,获得积分10
7秒前
dz发布了新的文献求助10
7秒前
wq完成签到 ,获得积分10
8秒前
赘婿应助快乐的呼呼采纳,获得10
8秒前
Singsea发布了新的文献求助10
8秒前
9秒前
英俊的铭应助崔裕敬采纳,获得10
9秒前
9秒前
溪秋白完成签到,获得积分10
9秒前
黄利发布了新的文献求助30
9秒前
不吃橘子发布了新的文献求助10
10秒前
10秒前
QYSF222发布了新的文献求助10
11秒前
科研通AI5应助雷雪采纳,获得10
11秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481440
求助须知:如何正确求助?哪些是违规求助? 3071576
关于积分的说明 9122712
捐赠科研通 2763320
什么是DOI,文献DOI怎么找? 1516389
邀请新用户注册赠送积分活动 701550
科研通“疑难数据库(出版商)”最低求助积分说明 700413