Group Buying Recommendation Model Based on Multi-task Learning

计算机科学 推荐系统 任务(项目管理) 群(周期表) 编码(集合论) 代表(政治) 情报检索 人工智能 机器学习 集合(抽象数据类型) 有机化学 化学 管理 程序设计语言 法学 经济 政治 政治学
作者
Shuoyao Zhai,Baichuan Liu,Deqing Yang,Yanghua Xiao
标识
DOI:10.1109/icde55515.2023.00080
摘要

In recent years, group buying has become one popular kind of online shopping activities, thanks to its larger sales and lower unit price. Unfortunately, seldom research focuses on the recommendations specifically for group buying by now. Although some recommendation models have been proposed for group recommendation, they can not be directly used to achieve the real-world group buying recommendation, due to the essential difference between group recommendation and group buying recommendation. In this paper, we first formalize the task of group buying recommendation into two sub-tasks. Then, based on our insights into the correlations and interactions between the two sub-tasks, we propose a novel recommendation model for group buying, namely MGBR, which is built mainly with a multi-task learning module. To improve recommendation performance further, we devise some collaborative expert networks and adjusted gates in the multi-task learning module, to promote the information interaction between the two sub-tasks. Furthermore, we propose two auxiliary losses corresponding to the two sub-tasks, to refine the representation learning in our model. Our extensive experiments not only demonstrate that the augmented representations learned in our model result in better performance than previous recommendation models, but also justify the impacts of the specially designed components in our model. To reproduce our model’s recommendation results conveniently, we have provided our model’s source code and dataset on https://github.com/DeqingYang/MGBR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chrispaul完成签到,获得积分10
1秒前
小赵发布了新的文献求助10
2秒前
3秒前
NexusExplorer应助ranj采纳,获得10
3秒前
YY完成签到,获得积分10
4秒前
petiteblanche发布了新的文献求助10
5秒前
7秒前
乐乐应助坚强的严青采纳,获得10
8秒前
yinlu发布了新的文献求助10
8秒前
无花果应助rundstedt采纳,获得10
8秒前
doctor赵完成签到,获得积分10
9秒前
传奇3应助巴西琉斯采纳,获得10
11秒前
Lucas应助petiteblanche采纳,获得10
12秒前
情怀应助小分队采纳,获得10
13秒前
koayer完成签到,获得积分10
13秒前
Sinner发布了新的文献求助10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
13秒前
14秒前
15秒前
16秒前
16秒前
雪白的硬币完成签到,获得积分10
17秒前
勤奋的乐荷完成签到,获得积分10
18秒前
嗯哼应助啊啊啊鬼啊采纳,获得20
18秒前
20秒前
20秒前
他也蓝发布了新的文献求助10
22秒前
南昌黑人完成签到,获得积分10
22秒前
Sinner完成签到,获得积分10
22秒前
24秒前
Ava应助刘斌采纳,获得10
24秒前
chen发布了新的文献求助10
25秒前
Akim应助称心的海蓝采纳,获得10
25秒前
Hongbin完成签到,获得积分10
26秒前
小分队发布了新的文献求助10
27秒前
27秒前
27秒前
Hello应助小城故事和冰雨采纳,获得10
28秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125633
求助须知:如何正确求助?哪些是违规求助? 2775924
关于积分的说明 7728426
捐赠科研通 2431401
什么是DOI,文献DOI怎么找? 1291999
科研通“疑难数据库(出版商)”最低求助积分说明 622301
版权声明 600376