Group Buying Recommendation Model Based on Multi-task Learning

计算机科学 推荐系统 任务(项目管理) 群(周期表) 编码(集合论) 代表(政治) 情报检索 人工智能 机器学习 集合(抽象数据类型) 有机化学 化学 管理 程序设计语言 法学 经济 政治 政治学
作者
Shuoyao Zhai,Baichuan Liu,Deqing Yang,Yanghua Xiao
标识
DOI:10.1109/icde55515.2023.00080
摘要

In recent years, group buying has become one popular kind of online shopping activities, thanks to its larger sales and lower unit price. Unfortunately, seldom research focuses on the recommendations specifically for group buying by now. Although some recommendation models have been proposed for group recommendation, they can not be directly used to achieve the real-world group buying recommendation, due to the essential difference between group recommendation and group buying recommendation. In this paper, we first formalize the task of group buying recommendation into two sub-tasks. Then, based on our insights into the correlations and interactions between the two sub-tasks, we propose a novel recommendation model for group buying, namely MGBR, which is built mainly with a multi-task learning module. To improve recommendation performance further, we devise some collaborative expert networks and adjusted gates in the multi-task learning module, to promote the information interaction between the two sub-tasks. Furthermore, we propose two auxiliary losses corresponding to the two sub-tasks, to refine the representation learning in our model. Our extensive experiments not only demonstrate that the augmented representations learned in our model result in better performance than previous recommendation models, but also justify the impacts of the specially designed components in our model. To reproduce our model’s recommendation results conveniently, we have provided our model’s source code and dataset on https://github.com/DeqingYang/MGBR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
袁奇点发布了新的文献求助30
1秒前
追寻源智关注了科研通微信公众号
1秒前
CYcola关注了科研通微信公众号
1秒前
无限的山水完成签到 ,获得积分10
1秒前
2秒前
2秒前
xpdnpu完成签到,获得积分10
2秒前
一条咸鱼发布了新的文献求助10
2秒前
快乐帽子发布了新的文献求助10
3秒前
4秒前
里面发布了新的文献求助10
5秒前
5秒前
ccccc完成签到,获得积分10
5秒前
儒雅冰岚完成签到,获得积分10
5秒前
彭于晏应助yoneyamai采纳,获得10
5秒前
5秒前
6秒前
6秒前
7秒前
daisy完成签到,获得积分10
7秒前
无限绿旋发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
8秒前
WQ发布了新的文献求助50
8秒前
机灵柚子应助苏桑焉采纳,获得20
9秒前
香蕉觅云应助自然的含烟采纳,获得10
9秒前
guoguo完成签到,获得积分10
11秒前
Z1987完成签到,获得积分10
11秒前
11秒前
无限的胜发布了新的文献求助10
11秒前
CodeCraft应助youlingduxiu采纳,获得10
11秒前
充电宝应助里面采纳,获得10
11秒前
无私的芹发布了新的文献求助10
11秒前
12秒前
追寻源智发布了新的文献求助10
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951800
求助须知:如何正确求助?哪些是违规求助? 3497233
关于积分的说明 11086336
捐赠科研通 3227767
什么是DOI,文献DOI怎么找? 1784520
邀请新用户注册赠送积分活动 868692
科研通“疑难数据库(出版商)”最低求助积分说明 801163