材料科学
储能
电容器
陶瓷
电介质
极化(电化学)
热传导
工程物理
热稳定性
铁电性
光电子学
电压
复合材料
电气工程
热力学
功率(物理)
化学工程
化学
物理
物理化学
工程类
作者
Changbai Long,Wenjie Zhou,Huiming Song,Kun Zheng,Wei Ren,Haijun Wu,Xiangdong Ding,Laijun Liu
出处
期刊:Acta Materialia
[Elsevier]
日期:2023-07-02
卷期号:256: 119135-119135
被引量:42
标识
DOI:10.1016/j.actamat.2023.119135
摘要
Nowadays, it is urgent to explore advanced and eco-friendly energy storage capacitors based on lead-free relaxor ferroelectric (RFE) ceramics in order to meet the ever-increasing requirements in pulsed power systems. BaTiO3 (BT)-based RFE ceramics are considered as ones of the best high-temperature energy storage materials due to their good thermal stability. However, relatively low recoverable energy storage density (Wrec<5 J/cm3) has been a key bottleneck restricting the practical applications of them. Here, a novel strategy is proposed to create highly dynamic PNRs and the intrinsic conduction by introducing Bi(M1-0.015xTa0.015x)O3+0.015x (BMO-Ta, M=Mg2/3Ta1/3) to BT matrix. As a consequence, the designed (1-x)BT-x(BMO-Ta) ceramics exhibit dramatically enhanced energy storage properties including ultrahigh Wrec and efficiency (η), because of the coexistence of very slim polarization hysteresis (P-E) loops, large polarization difference (ΔP) and giant dielectric breakdown electric strength (Eb). Wrec and η of the x=0.25 ceramic reach up to 9.03 J/cm3 and 95.2% under 720 kV/cm, respectively. Furthermore, it shows excellent temperature/frequency/cycling stability over a wide range of 20−200 °C, 1−500 Hz and 1−3.3 × 105 cycles, respectively (the variations of Wrec and η are < 3% and < 4%, respectively). The findings in this paper not only indicate excellent comprehensive properties achieved in the novel (1-x)BT-x(BMO-Ta) system, but also provide an effective approach to explore advanced energy storage capacitors in other lead-free ceramic systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI