DENSE SWIN-UNET: DENSE SWIN TRANSFORMERS FOR SEMANTIC SEGMENTATION OF PNEUMOTHORAX IN CT IMAGES

气胸 分割 计算机科学 人工智能 Sørensen–骰子系数 模式识别(心理学) 图像分割 医学 放射科
作者
Zhixian Tang,Jinyang Zhang,Chunmei Bai,Yan Zhang,Kaiyi Liang,Xufeng Yao
出处
期刊:Journal of Mechanics in Medicine and Biology
标识
DOI:10.1142/s0219519423400699
摘要

Pneumothorax is a common yet potentially serious lung disease, which makes prompt diagnosis and treatment critical in clinical practice. Deep learning methods have proven effective in detecting pneumothorax lesions in medical images and providing quantitative analysis. However, due to the irregular shapes and uncertain positions of pneumothorax lesions, current segmentation methods must be further improved to increase accuracy. This study aimed to propose a Dense Swin-Unet algorithm that integrated the Dense Swin Transformer Block with the Swin-Unet model. The Dense Swin-Unet algorithm employed a sliding window self-attentiveness mechanism on different scales to enhance multiscale long-range dependencies. We designed an enhanced loss function that accelerated the convergence speed to address the issue of class imbalance. Given the limited availability of data in pneumothorax image processing, we created a new dataset and evaluated the efficacy of our model on this dataset. The results demonstrated that our lesion segmentation algorithm attained a Dice coefficient of 88.8%, representing a 1.5% improvement compared with previous deep learning algorithms. Notably, our algorithm achieved a significant enhancement in segmenting small microlesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RebeccaHe举报深情的友易求助涉嫌违规
刚刚
栗子芸发布了新的文献求助10
刚刚
陈陈发布了新的文献求助10
刚刚
chenxin7271发布了新的文献求助10
2秒前
顾矜应助ZSWAA采纳,获得10
2秒前
Mewo发布了新的文献求助10
3秒前
天天快乐应助xiaoliu采纳,获得10
3秒前
cocolu应助千里采纳,获得10
3秒前
蝶恋花发布了新的文献求助10
4秒前
CipherSage应助LJJ采纳,获得10
4秒前
耍酷芹菜完成签到,获得积分10
4秒前
久桃发布了新的文献求助10
4秒前
Owen应助AA采纳,获得10
4秒前
5秒前
6秒前
6秒前
ding应助jf采纳,获得30
7秒前
1410发布了新的文献求助10
8秒前
8秒前
8秒前
CipherSage应助顺心的梨愁采纳,获得10
9秒前
Jun完成签到,获得积分20
9秒前
LuciusHe发布了新的文献求助10
9秒前
cookie完成签到,获得积分10
9秒前
汉堡包应助srs采纳,获得10
10秒前
Lxx完成签到,获得积分10
10秒前
英俊的铭应助赫若魔采纳,获得10
10秒前
10秒前
科研通AI2S应助Southluuu采纳,获得10
10秒前
zlzhang应助帅气面包采纳,获得10
11秒前
丰知然应助ComVivas采纳,获得10
12秒前
小高子发布了新的文献求助20
12秒前
newyear完成签到,获得积分10
12秒前
黄健伟完成签到,获得积分10
13秒前
xiaoliu发布了新的文献求助10
13秒前
共享精神应助优雅战斗机采纳,获得10
13秒前
13秒前
搜集达人应助大方的枕头采纳,获得10
14秒前
14秒前
丘比特应助PP采纳,获得10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309308
求助须知:如何正确求助?哪些是违规求助? 2942666
关于积分的说明 8510202
捐赠科研通 2617790
什么是DOI,文献DOI怎么找? 1430403
科研通“疑难数据库(出版商)”最低求助积分说明 664123
邀请新用户注册赠送积分活动 649286