细胞生物学
NMDA受体
化学
NADPH氧化酶
阿普辛尼
生物
药理学
受体
活性氧
生物化学
作者
Chih-Cheng Wu,Chung‐Yuh Tzeng,Cheng-Yi Chang,Jiaan‐Der Wang,Yu‐Fan Chen,Wen‐Ying Chen,Yu‐Hsiang Kuan,Su‐Lan Liao,Wenyi Wang,Chun‐Jung Chen
标识
DOI:10.1016/j.ejphar.2023.175927
摘要
Microglia have both protective and pathogenic properties, while polarization plays a decisive role in their functional diversity. Apart from being an energetic organelle, mitochondria possess biological capabilities of signaling and immunity involving mitochondrial dynamics. The N-methyl-D-aspartate (NMDA)-type glutamate receptor displays excitatory neurotransmission, excitatory neurotoxicity and pro-inflammatory properties in a membrane location- and cell context-dependent manner. In this study, we have provided experimental evidence showing that by acting on mitochondrial dynamics, NMDA receptors displayed pro-inflammatory properties, while its non-competitive inhibitor MK801 exhibited anti-inflammatory potential in Lipopolysaccharide (LPS)-challenged BV-2 microglia cells. LPS stimulation increased the protein phosphorylation of cells regarding their NMDA receptor component subunits and Calcium/Calmodulin-dependent Protein Kinase II (CaMKII), along with mobilizing intracellular calcium. Additionally, parallel changes occurred in the activation of Transforming Growth Factor-β (TGF-β)-Activated Kinase 1 (TAK1), NF-κB p65 and NF-κB DNA binding activity, acquisition of pro-inflammatory M1 polarization and expression of pro-inflammatory cytokines. LPS-treated cells further displayed signs of mitochondrial dysfunction with higher expressions of the active form of Dynamin-Related Protein 1 (Drp1), NADPH Oxidase-2 (NOX2) expression and the generation of DCFDA-/MitoSOX-sensitive Reactive Oxygen Species (ROS). NMDA receptor blockade by MK801, along with CaMKII inhibitor KN93, Drp1 inhibitor Mdivi-1 and antioxidant apocynin alleviated LPS-induced pro-inflammatory changes. Other than the reported CaMKII/TAK1/NF-κB axis, our in vitro study revealed the CaMKII/Drp1/ROS/NF-κB axis being an alternative cascade for shaping pro-inflammatory phenotypes of microglia upon LPS stimulation, and MK801 having the potential for inhibiting microglia activation and any associated inflammatory damages.
科研通智能强力驱动
Strongly Powered by AbleSci AI