催化作用
酒精氧化
苯甲醇
酒
X射线光电子能谱
氧化物
催化氧化
化学
无机化学
氧气
多相催化
氧化还原
金属
拉曼光谱
材料科学
化学工程
有机化学
光学
物理
工程类
作者
Lijun Lei,Wei Fan,Fengxiao Hou,Y.X. Wang,Chang Q. Sun,Yi Zhang
标识
DOI:10.1016/s1872-5813(23)60375-5
摘要
The oxidation of alcohols is a significant chemical reaction, and the efficient oxidation of alcohols over heterogeneous catalysts using oxygen as oxidant has attracted much attention in recent years. Among them, Pd/CeO2 exhibits excellent alcohol oxidation performance. However, the structure-activity relationship between the catalyst's structure and its catalytic performance for alcohol oxidation is still not clearly understood. This study involved the preparation of CeO2 nanosheets with different concentrations of surface oxygen vacancies (Ov) and their subsequent loading with Pd to explore their catalytic performance for alcohol oxidation. The findings obtained through XPS, Raman, and XAS indicated a positive correlation between the surface Ov concentration of CeO2 as well as the ratio of Pd2+ fraction. The alcohol oxidation results and structure-performance relationship studies showed that there was a good linear relationship between the Pd2+ ratio as well as the surface Ce3+ concentration and the TOF of benzyl alcohol oxidation reaction, respectively. And the interfacial site (Pd–O–Ce) formed by Pd and CeO2 was the main catalytic site for this type of alcohol oxidation catalysts. This study contributes to the understanding of the catalytic role of interfacial sites in metal and oxide support for the development of better alcohol oxidation catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI