An improved genetic algorithm with modified critical path-based searching for integrated process planning and scheduling problem considering automated guided vehicle transportation task

调度(生产过程) 关键路径法 水准点(测量) 任务(项目管理) 作业车间调度 过程(计算) 计算机科学 遗传算法 路径(计算) 工程类 工业工程 机器学习 布线(电子设计自动化) 系统工程 运营管理 嵌入式系统 大地测量学 地理 程序设计语言 操作系统
作者
Qihao Liu,Cuiyu Wang,Xinyu Li,Liang Gao
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:70: 127-136 被引量:45
标识
DOI:10.1016/j.jmsy.2023.07.004
摘要

Integrated process planning and scheduling (IPPS) can take advantage of the complementary attributes of process planning and shop scheduling to obtain better production schemes and process routes improving the whole performance of the manufacturing system. Additional consideration of the shop logistics system including task assignment of automated guided vehicles (AGVs) can improve shop productivity while ensuring the smooth running of the whole manufacturing system. This paper investigates an IPPS problem considering AGV transportation task (IPPS_T). Compared with the original IPPS, IPPS_T addresses not only the process selection, operation sequencing, and machine selection but also the transportation task assignment of the AGVs. Therefore, it is much more difficult than the IPPS problem which has already been proven to be NP-hard. The paper proposes an integrated encoding method to improve the integration of the manufacturing system by representing the process route, shop scheduling scheme, and transportation task assignment plan simultaneously in one individual. This paper designs an improved genetic algorithm (IGA) combining a critical path-based neighborhood searching strategy which can ensure the effectiveness of local search on both AGVs and machines. The numerical experiments with different numbers of AGVs are conducted on the open instances which are extended from the well-known Kim benchmark. The results obtained by the IGA show significant advantages proving the effectiveness of the proposed encoding method and critical path-searching strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhh完成签到,获得积分10
刚刚
vin应助肥而不腻的羚羊采纳,获得10
2秒前
华仔应助怕孤单的破茧采纳,获得10
3秒前
5秒前
CipherSage应助672采纳,获得10
6秒前
dsjlove完成签到,获得积分20
7秒前
8秒前
等一只ya完成签到,获得积分10
8秒前
虚影完成签到,获得积分10
9秒前
伍铭完成签到 ,获得积分10
12秒前
俏皮的绝山完成签到,获得积分10
12秒前
12秒前
孙燕应助JIANGSHUI采纳,获得50
13秒前
唐禹嘉完成签到 ,获得积分10
14秒前
小超发布了新的文献求助10
17秒前
17秒前
科研通AI5应助YJ888采纳,获得10
18秒前
老干部完成签到,获得积分10
20秒前
随风完成签到,获得积分10
21秒前
22秒前
ycool完成签到 ,获得积分10
23秒前
24秒前
hxy123完成签到,获得积分10
24秒前
24秒前
ablesic.rong发布了新的文献求助10
26秒前
张绵羊完成签到 ,获得积分10
28秒前
香蕉觅云应助booooo采纳,获得10
28秒前
hxy123发布了新的文献求助10
28秒前
29秒前
22222发布了新的文献求助30
30秒前
辛辛应助来来采纳,获得10
31秒前
修辛发布了新的文献求助10
32秒前
33秒前
热心市民小红花应助bbh采纳,获得10
35秒前
ED应助机智太阳采纳,获得10
35秒前
臻灏完成签到,获得积分10
35秒前
英俊白莲完成签到,获得积分10
36秒前
36秒前
痴情的茈发布了新的文献求助10
36秒前
CHN完成签到 ,获得积分10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989550
求助须知:如何正确求助?哪些是违规求助? 3531774
关于积分的说明 11254747
捐赠科研通 3270278
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882125
科研通“疑难数据库(出版商)”最低求助积分说明 809176