Improved max-value entropy search for multi-objective bayesian optimization with constraints

数学优化 贝叶斯优化 计算机科学 多目标优化 熵(时间箭头) 帕累托原理 水准点(测量) 算法 数学 大地测量学 量子力学 物理 地理
作者
Daniel Fernández-Sánchez,Eduardo C. Garrido-Merchán,Daniel Hernández-Lobato
出处
期刊:Neurocomputing [Elsevier]
卷期号:546: 126290-126290 被引量:3
标识
DOI:10.1016/j.neucom.2023.126290
摘要

We present MESMOC+, an improved version of Max-value Entropy search for Multi-Objective Bayesian optimization with Constraints (MESMOC). MESMOC+ can be used to solve constrained multi-objective problems when the objectives and the constraints are expensive to evaluate. It is based on minimizing the entropy of the solution of the optimization problem in function space (i.e., the Pareto front) to guide the search for the optimum. The cost of MESMOC+ is linear in the number of objectives and constraints. Furthermore, it is often significantly smaller than the cost of alternative methods based on minimizing the entropy of the Pareto set. The reason for this is that it is easier to approximate the required computations in MESMOC+. Moreover, MESMOC+'s acquisition function is expressed as the sum of one acquisition per each black-box (objective or constraint). Therefore, it can be used in a decoupled evaluation setting in which it is chosen not only the next input location to evaluate, but also which black-box to evaluate there. We compare MESMOC+ with related methods in synthetic, benchmark and real optimization problems. These experiments show that MESMOC+ has similar performance to that of state-of-the-art acquisitions based on entropy search, but it is faster to execute and simpler to implement. Moreover, our experiments also show that MESMOC+ is more robust with respect to the number of samples of the Pareto front.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Aries完成签到,获得积分10
刚刚
传奇3应助研友_nxwBJL采纳,获得20
1秒前
陈阳完成签到,获得积分10
1秒前
呆呆瓜完成签到,获得积分10
1秒前
meijie发布了新的文献求助10
1秒前
共享精神应助chenzi采纳,获得10
2秒前
3秒前
3秒前
4秒前
RUSH发布了新的文献求助10
4秒前
黄坤完成签到,获得积分10
5秒前
美好斓发布了新的文献求助10
5秒前
呆呆瓜发布了新的文献求助10
5秒前
5秒前
Jasper应助wddfz采纳,获得10
6秒前
每天100次发布了新的文献求助200
6秒前
7秒前
上官若男应助一只西瓜茶采纳,获得10
8秒前
JYY发布了新的文献求助10
8秒前
9秒前
RUSH完成签到,获得积分10
9秒前
泽雾川完成签到,获得积分10
10秒前
今后应助lili采纳,获得10
11秒前
11秒前
英俊的铭应助li采纳,获得30
11秒前
12秒前
13秒前
13秒前
13秒前
111发布了新的文献求助20
14秒前
chcmuer发布了新的文献求助10
14秒前
16秒前
wddfz发布了新的文献求助10
17秒前
堀川发布了新的文献求助10
17秒前
aichizizhu发布了新的文献求助30
18秒前
时光机带哥走完成签到 ,获得积分10
18秒前
羊羊羊发布了新的文献求助50
19秒前
刘清河完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462518
求助须知:如何正确求助?哪些是违规求助? 4567225
关于积分的说明 14309649
捐赠科研通 4493103
什么是DOI,文献DOI怎么找? 2461427
邀请新用户注册赠送积分活动 1450522
关于科研通互助平台的介绍 1425854