Improved max-value entropy search for multi-objective bayesian optimization with constraints

数学优化 贝叶斯优化 计算机科学 多目标优化 熵(时间箭头) 帕累托原理 水准点(测量) 算法 数学 物理 大地测量学 量子力学 地理
作者
Daniel Fernández-Sánchez,Eduardo C. Garrido-Merchán,Daniel Hernández-Lobato
出处
期刊:Neurocomputing [Elsevier]
卷期号:546: 126290-126290 被引量:3
标识
DOI:10.1016/j.neucom.2023.126290
摘要

We present MESMOC+, an improved version of Max-value Entropy search for Multi-Objective Bayesian optimization with Constraints (MESMOC). MESMOC+ can be used to solve constrained multi-objective problems when the objectives and the constraints are expensive to evaluate. It is based on minimizing the entropy of the solution of the optimization problem in function space (i.e., the Pareto front) to guide the search for the optimum. The cost of MESMOC+ is linear in the number of objectives and constraints. Furthermore, it is often significantly smaller than the cost of alternative methods based on minimizing the entropy of the Pareto set. The reason for this is that it is easier to approximate the required computations in MESMOC+. Moreover, MESMOC+'s acquisition function is expressed as the sum of one acquisition per each black-box (objective or constraint). Therefore, it can be used in a decoupled evaluation setting in which it is chosen not only the next input location to evaluate, but also which black-box to evaluate there. We compare MESMOC+ with related methods in synthetic, benchmark and real optimization problems. These experiments show that MESMOC+ has similar performance to that of state-of-the-art acquisitions based on entropy search, but it is faster to execute and simpler to implement. Moreover, our experiments also show that MESMOC+ is more robust with respect to the number of samples of the Pareto front.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗奇异果完成签到,获得积分10
刚刚
整齐凌萱发布了新的文献求助10
1秒前
yuaner发布了新的文献求助10
1秒前
2秒前
2秒前
Jasper应助无情的宛儿采纳,获得10
2秒前
老肖应助Muller采纳,获得20
3秒前
4秒前
4秒前
七七发布了新的文献求助10
5秒前
白临渊发布了新的文献求助10
6秒前
JamesPei应助迅速冰颜采纳,获得10
6秒前
yuaner发布了新的文献求助10
11秒前
Owen应助wangayting采纳,获得30
11秒前
蓝色逍遥鱼完成签到,获得积分10
12秒前
12秒前
顾矜应助阿尼亚采纳,获得30
13秒前
Tiako完成签到,获得积分10
15秒前
15秒前
16秒前
cc完成签到 ,获得积分10
16秒前
17秒前
冷静芹菜发布了新的文献求助50
18秒前
标致冰海发布了新的文献求助30
20秒前
镜之边缘完成签到,获得积分10
21秒前
21秒前
liweiDr发布了新的文献求助10
22秒前
可爱的函函应助小呆陶陶采纳,获得10
22秒前
深情安青应助LRK采纳,获得10
22秒前
25秒前
从容芮应助科研通管家采纳,获得30
26秒前
桐桐应助科研通管家采纳,获得10
26秒前
wanci应助科研通管家采纳,获得10
26秒前
JamesPei应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
27秒前
red关闭了red文献求助
27秒前
28秒前
英俊的铭应助IMF采纳,获得10
28秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139211
求助须知:如何正确求助?哪些是违规求助? 2790129
关于积分的说明 7794004
捐赠科研通 2446563
什么是DOI,文献DOI怎么找? 1301236
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109