Improved max-value entropy search for multi-objective bayesian optimization with constraints

数学优化 贝叶斯优化 计算机科学 多目标优化 熵(时间箭头) 帕累托原理 水准点(测量) 算法 数学 物理 大地测量学 量子力学 地理
作者
Daniel Fernández-Sánchez,Eduardo C. Garrido-Merchán,Daniel Hernández-Lobato
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:546: 126290-126290 被引量:3
标识
DOI:10.1016/j.neucom.2023.126290
摘要

We present MESMOC+, an improved version of Max-value Entropy search for Multi-Objective Bayesian optimization with Constraints (MESMOC). MESMOC+ can be used to solve constrained multi-objective problems when the objectives and the constraints are expensive to evaluate. It is based on minimizing the entropy of the solution of the optimization problem in function space (i.e., the Pareto front) to guide the search for the optimum. The cost of MESMOC+ is linear in the number of objectives and constraints. Furthermore, it is often significantly smaller than the cost of alternative methods based on minimizing the entropy of the Pareto set. The reason for this is that it is easier to approximate the required computations in MESMOC+. Moreover, MESMOC+'s acquisition function is expressed as the sum of one acquisition per each black-box (objective or constraint). Therefore, it can be used in a decoupled evaluation setting in which it is chosen not only the next input location to evaluate, but also which black-box to evaluate there. We compare MESMOC+ with related methods in synthetic, benchmark and real optimization problems. These experiments show that MESMOC+ has similar performance to that of state-of-the-art acquisitions based on entropy search, but it is faster to execute and simpler to implement. Moreover, our experiments also show that MESMOC+ is more robust with respect to the number of samples of the Pareto front.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
beckhaw完成签到,获得积分10
刚刚
D追完成签到,获得积分10
刚刚
大气的山彤完成签到,获得积分10
刚刚
王二哈完成签到,获得积分10
1秒前
超级真发布了新的文献求助10
1秒前
2秒前
顺心书琴完成签到,获得积分10
2秒前
wt完成签到,获得积分10
3秒前
xiaorain完成签到,获得积分10
3秒前
优秀冥茗完成签到,获得积分10
4秒前
chen完成签到,获得积分10
4秒前
ycy完成签到,获得积分10
4秒前
白日梦想家完成签到 ,获得积分10
5秒前
5秒前
Orange应助xixi采纳,获得10
5秒前
asdfqwer应助gcl采纳,获得20
5秒前
老李完成签到,获得积分10
6秒前
6秒前
yyy完成签到 ,获得积分10
6秒前
accelia完成签到,获得积分10
6秒前
hkh发布了新的文献求助10
7秒前
7秒前
李爱国应助Desire采纳,获得10
7秒前
典雅涵瑶完成签到,获得积分10
7秒前
Cris完成签到,获得积分10
7秒前
8秒前
领导范儿应助sunyanghu369采纳,获得10
8秒前
pengyang完成签到 ,获得积分10
9秒前
Donby完成签到,获得积分10
9秒前
ShengQ完成签到,获得积分10
9秒前
10秒前
10秒前
没所谓完成签到,获得积分10
10秒前
11秒前
科研通AI5应助ardejiang采纳,获得10
11秒前
caixia完成签到 ,获得积分10
11秒前
月下共酌完成签到,获得积分10
11秒前
机灵瑛完成签到,获得积分20
11秒前
kk完成签到,获得积分10
11秒前
ocean发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4571570
求助须知:如何正确求助?哪些是违规求助? 3992686
关于积分的说明 12358989
捐赠科研通 3665670
什么是DOI,文献DOI怎么找? 2020248
邀请新用户注册赠送积分活动 1054513
科研通“疑难数据库(出版商)”最低求助积分说明 942077