亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved max-value entropy search for multi-objective bayesian optimization with constraints

数学优化 贝叶斯优化 计算机科学 多目标优化 熵(时间箭头) 帕累托原理 水准点(测量) 算法 数学 大地测量学 量子力学 物理 地理
作者
Daniel Fernández-Sánchez,Eduardo C. Garrido-Merchán,Daniel Hernández-Lobato
出处
期刊:Neurocomputing [Elsevier]
卷期号:546: 126290-126290 被引量:3
标识
DOI:10.1016/j.neucom.2023.126290
摘要

We present MESMOC+, an improved version of Max-value Entropy search for Multi-Objective Bayesian optimization with Constraints (MESMOC). MESMOC+ can be used to solve constrained multi-objective problems when the objectives and the constraints are expensive to evaluate. It is based on minimizing the entropy of the solution of the optimization problem in function space (i.e., the Pareto front) to guide the search for the optimum. The cost of MESMOC+ is linear in the number of objectives and constraints. Furthermore, it is often significantly smaller than the cost of alternative methods based on minimizing the entropy of the Pareto set. The reason for this is that it is easier to approximate the required computations in MESMOC+. Moreover, MESMOC+'s acquisition function is expressed as the sum of one acquisition per each black-box (objective or constraint). Therefore, it can be used in a decoupled evaluation setting in which it is chosen not only the next input location to evaluate, but also which black-box to evaluate there. We compare MESMOC+ with related methods in synthetic, benchmark and real optimization problems. These experiments show that MESMOC+ has similar performance to that of state-of-the-art acquisitions based on entropy search, but it is faster to execute and simpler to implement. Moreover, our experiments also show that MESMOC+ is more robust with respect to the number of samples of the Pareto front.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈词丶完成签到,获得积分10
1秒前
3秒前
思源应助hush采纳,获得10
6秒前
落后钢铁侠完成签到 ,获得积分10
8秒前
white完成签到 ,获得积分10
10秒前
梦玲完成签到 ,获得积分10
12秒前
13秒前
天真冷安完成签到,获得积分10
15秒前
15秒前
今后应助komorebi采纳,获得10
17秒前
月亮啊完成签到 ,获得积分10
18秒前
自信的汉堡完成签到,获得积分10
21秒前
Aurora发布了新的文献求助10
21秒前
碗_发布了新的文献求助10
21秒前
22秒前
23秒前
remohu完成签到,获得积分10
23秒前
Tendency完成签到 ,获得积分10
24秒前
29秒前
lin123完成签到 ,获得积分10
34秒前
开心的耳机完成签到 ,获得积分10
38秒前
39秒前
思源应助浮浮世世采纳,获得10
41秒前
45秒前
SHF发布了新的文献求助10
45秒前
整齐晓筠完成签到 ,获得积分10
53秒前
香蕉觅云应助热情的海蓝采纳,获得10
58秒前
58秒前
直菱完成签到,获得积分10
58秒前
1分钟前
yingying完成签到 ,获得积分10
1分钟前
熠旅完成签到,获得积分10
1分钟前
12123浪发布了新的文献求助10
1分钟前
Aurora发布了新的文献求助10
1分钟前
1分钟前
斯文败类应助激昂的如柏采纳,获得10
1分钟前
1分钟前
1分钟前
落落洛栖完成签到 ,获得积分10
1分钟前
皮戾发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301672
求助须知:如何正确求助?哪些是违规求助? 4449154
关于积分的说明 13847930
捐赠科研通 4335215
什么是DOI,文献DOI怎么找? 2380208
邀请新用户注册赠送积分活动 1375181
关于科研通互助平台的介绍 1341185