Pulmonary embolism detection on venous thrombosis ultrasound images with bi‐dimensional entropy measures: Preliminary results

医学 超声波 肺栓塞 放射科 接收机工作特性 计算机断层血管造影 血栓形成 下肢静脉超声检查 血管造影 外科 内科学
作者
Antoine Jamin,Clément Hoffmann,Guillaume Mahé,Luc Bressollette,Anne Humeau‐Heurtier
出处
期刊:Medical Physics [Wiley]
卷期号:50 (12): 7840-7851 被引量:1
标识
DOI:10.1002/mp.16568
摘要

Abstract Background Venous thromboembolism (VTE) is a common health issue. A clinical expression of VTE is a deep vein thrombosis (DVT) that may lead to pulmonary embolism (PE), a critical illness. When DVT is suspected, an ultrasound exam is performed. However, the characteristics of the clot observed on ultrasound images cannot be linked with the presence of PE. Computed tomography angiography is the gold standard to diagnose PE. Nevertheless, the latter technique is expensive and requires the use of contrast agents. Purpose In this article, we present an image processing method based on ultrasound images to determine whether PE is associated or not with lower limb DVT. In terms of medical equipment, this new approach (Doppler ultrasound image processing) is inexpensive and quite easy. Methods With the aim to help medical doctors in detecting PE, we herein propose to process ultrasound images of patients with DVT. After a first step based on histogram equalization, the analysis procedure is based on the use of bi‐dimensional entropy measures. Two different algorithms are tested: the bi‐dimensional dispersion entropy () mesure and the bi‐dimensional fuzzy entropy () mesure. Thirty‐two patients (12 women and 20 men, 67.63 ± 16.19 years old), split into two groups (16 with and 16 without PE), compose our database of around 1490 ultrasound images (split into seven different sizes from 32× 32 px to 128 × 128 px). p ‐values, computed with the Mann‐Whitney test, are used to determine if entropy values of the two groups are statistically significantly different. Receiver operating characteristic (ROC) curves are plotted and analyzed for the most significant cases to define if entropy values are able to discriminate the two groups. Results p ‐values show that there are statistical differences between of patients with PE and patients without PE for 112× 112 px and 128× 128 px images. Area under the ROC curve (AUC) is higher than 0.7 (threshold for a fair test) for 112× 112 and 128× 128 images. The best value of AUC (0.72) is obtained for 112× 112 px images. Conclusions Bi‐dimensional entropy measures applied to ultrasound images seem to offer encouraging perspectives for PE detection: our first experiment, on a small dataset, shows that on 112× 112 px images is able to detect PE. The next step of our work will consist in testing this approach on a larger dataset and in integrating in a machine learning algorithm. Furthermore, this study could also contribute to PE risk prediction for patients with VTE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咩咩完成签到,获得积分10
1秒前
ding应助要减肥的涑采纳,获得10
2秒前
Owen应助il701采纳,获得10
3秒前
4秒前
笑点低蜜蜂完成签到,获得积分10
5秒前
科研通AI2S应助小马哥采纳,获得10
5秒前
ouyangyu完成签到,获得积分20
6秒前
7秒前
天天快乐应助xixi采纳,获得10
8秒前
11完成签到 ,获得积分10
8秒前
8秒前
大模型应助愉快迎南采纳,获得10
8秒前
小马甲应助Jane采纳,获得10
9秒前
倪妮发布了新的文献求助10
9秒前
善学以致用应助Kirin采纳,获得10
10秒前
11秒前
11秒前
糖糖完成签到,获得积分10
12秒前
12秒前
Lum1na发布了新的文献求助10
13秒前
13秒前
项南风完成签到,获得积分20
14秒前
14秒前
草野发布了新的文献求助10
15秒前
甄遥发布了新的文献求助10
15秒前
思垢发布了新的文献求助10
16秒前
糖糖发布了新的文献求助10
16秒前
我是老大应助www采纳,获得10
17秒前
17秒前
ouyangyu发布了新的文献求助10
18秒前
19秒前
20秒前
il701发布了新的文献求助10
21秒前
WQ完成签到,获得积分10
21秒前
22秒前
23秒前
24秒前
24秒前
selfcuijing完成签到,获得积分10
26秒前
27秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3270735
求助须知:如何正确求助?哪些是违规求助? 2910117
关于积分的说明 8352503
捐赠科研通 2580598
什么是DOI,文献DOI怎么找? 1403560
科研通“疑难数据库(出版商)”最低求助积分说明 655864
邀请新用户注册赠送积分活动 635237