YOLO-SLD: An Attention Mechanism-Improved YOLO for License Plate Detection

许可证 计算机科学 过程(计算) 人工智能 钥匙(锁) 目标检测 计算机视觉 卡车 机制(生物学) 实时计算 模式识别(心理学) 计算机安全 工程类 汽车工程 操作系统 哲学 认识论
作者
Ming‐An Chung,Yu‐Jou Lin,Chia-Wei Lin
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 89035-89045 被引量:1
标识
DOI:10.1109/access.2024.3419587
摘要

The vehicle license plate detection plays a key role in Intelligent Transportation Systems. Detecting license plates, such as cars, trucks, and vans, is useful for law enforcement, surveillance, and toll booth operations. How to detect license plates quickly and accurately is crucial for license plate recognition. However, the uneven light condition or the oblique shooting angle of the license plate to be detected changes dramatically in real-world complex capture scenarios and the detection difficulty increases. At the same time, distance, lighting, angle, and other requirements are quite high, which seriously affects the detection performance. Therefore, an improved YOLOv7 integrating the parameter-free attention module SimAM for license plate detection was proposed, namely YOLO-SLD. Without modifying the original ELAN architecture, which is the key component of YOLOv7, a SimAM mechanism was added at the end of the ELAN to better extract license plate features and increase computational efficiency. More importantly, the SimAM module does not require any parameters to be added to the original YOLOv7 network, reducing model computation, and simplifying the calculation process. The performance of the detection model with different attention mechanisms was tested on the CCPD dataset for the first time and the proposed method was proven to be effective. The experimental result shows that the YOLO-SLD model has higher detection accuracy and is more lightweight with mAP at 0.5 with the overall improvement in accuracy from 98.44% of the original YOLOv7 model to 98.91%, an increase of 0.47% in accuracy. The accuracy of the CCPD test subset in dark and light images has improved from 93.5% to 96.7%, an increase of 3.2% in accuracy. The parameter size of the model is reduced by 1.2 million parameters compared to the original YOLOv7 model. Its performance is better than the other prevalent license plate detection algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yzm788695发布了新的文献求助10
刚刚
平常冬寒完成签到,获得积分10
刚刚
刚刚
1秒前
able完成签到 ,获得积分10
2秒前
辛勤尔白完成签到 ,获得积分10
3秒前
3秒前
4秒前
所所应助墩子采纳,获得20
5秒前
陶火桃发布了新的文献求助20
5秒前
三岁发布了新的文献求助10
5秒前
6秒前
8秒前
xuan完成签到,获得积分10
8秒前
9秒前
JLLi完成签到,获得积分10
9秒前
9秒前
阮楷瑞发布了新的文献求助10
10秒前
11秒前
gank发布了新的文献求助10
11秒前
华国锋应助伊伊采纳,获得10
12秒前
lings完成签到 ,获得积分10
12秒前
13秒前
黯然发布了新的文献求助10
13秒前
LSM发布了新的文献求助10
13秒前
上官若男应助minqiu采纳,获得10
14秒前
14秒前
仰头看云完成签到,获得积分10
15秒前
FashionBoy应助carbonhan采纳,获得10
15秒前
NexusExplorer应助dyy采纳,获得10
15秒前
慕青应助瀚泛采纳,获得10
17秒前
17秒前
喻白玉发布了新的文献求助30
18秒前
苏苏完成签到,获得积分10
18秒前
顾勇完成签到,获得积分10
18秒前
大个应助LSM采纳,获得10
18秒前
斯文败类应助阮楷瑞采纳,获得10
18秒前
Zhy发布了新的文献求助10
19秒前
19秒前
落寞醉易完成签到 ,获得积分10
20秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157189
求助须知:如何正确求助?哪些是违规求助? 2808483
关于积分的说明 7877835
捐赠科研通 2467029
什么是DOI,文献DOI怎么找? 1313118
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919