A review on the diversity of antimicrobial peptides and genome mining strategies for their prediction

基因组 抗生素耐药性 计算生物学 数据科学 人类健康 生物 计算机科学 生物技术 抗生素 基因 遗传学 医学 环境卫生
作者
Naveen Kumar,Prashant Bhagwat,Suren Singh,Santhosh Pillai
出处
期刊:Biochimie [Elsevier]
卷期号:227 (Pt A): 99-115 被引量:6
标识
DOI:10.1016/j.biochi.2024.06.013
摘要

Antibiotic resistance has become one of the most serious threats to human health in recent years. In response to the increasing microbial resistance to the antibiotics currently available, it is imperative to develop new antibiotics or explore new approaches to combat antibiotic resistance. Antimicrobial peptides (AMPs) have shown considerable promise in this regard, as the microbes develop low or no resistance against them. The discovery and development of AMPs still confront numerous obstacles such as finding a target, developing assays, and identifying hits and leads, which are time-consuming processes, making it difficult to reach the market. However, with the advent of genome mining, new antibiotics could be discovered efficiently using tools such as BAGEL, antiSMASH, RODEO, etc., providing hope for better treatment of diseases in the future. Computational methods used in genome mining automatically detect and annotate biosynthetic gene clusters in genomic data, making it a useful tool in natural product discovery. This review aims to shed light on the history, diversity, and mechanisms of action of AMPs and the data on new AMPs identified by traditional as well as genome mining strategies. It further substantiates the various phases of clinical trials for some AMPs, as well as an overview of genome mining databases and tools built expressly for AMP discovery. In light of the recent advancements, it is evident that targeted genome mining stands as a beacon of hope, offering immense potential to expedite the discovery of novel antimicrobials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细心健柏完成签到 ,获得积分10
4秒前
吉祥高趙完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
12秒前
液晶屏99完成签到,获得积分10
26秒前
kyt_vip完成签到,获得积分10
27秒前
laber完成签到,获得积分0
29秒前
zpmz完成签到 ,获得积分10
31秒前
谢陈完成签到 ,获得积分10
31秒前
神勇的天问完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
36秒前
木木杉完成签到 ,获得积分10
41秒前
45秒前
keke发布了新的文献求助10
51秒前
luokm完成签到,获得积分10
56秒前
qin完成签到 ,获得积分10
58秒前
yoyo完成签到 ,获得积分10
1分钟前
sx666完成签到 ,获得积分10
1分钟前
望远Arena发布了新的文献求助30
1分钟前
GaCf完成签到,获得积分20
1分钟前
端庄洪纲完成签到 ,获得积分10
1分钟前
冷艳的又蓝完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
淼淼之锋完成签到 ,获得积分10
1分钟前
Akim应助qausyh采纳,获得10
1分钟前
sci_zt完成签到 ,获得积分10
1分钟前
矜持完成签到 ,获得积分10
1分钟前
纸条条完成签到 ,获得积分10
1分钟前
粉鳍完成签到 ,获得积分10
1分钟前
乐观的星月完成签到 ,获得积分10
1分钟前
cocofan完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
我不是哪吒完成签到 ,获得积分10
1分钟前
qausyh完成签到,获得积分10
1分钟前
jhgfjkhgkjbjb完成签到 ,获得积分10
1分钟前
贝贝完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
孟寐以求完成签到 ,获得积分10
1分钟前
无心的星月完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612052
求助须知:如何正确求助?哪些是违规求助? 4696188
关于积分的说明 14890603
捐赠科研通 4731306
什么是DOI,文献DOI怎么找? 2546115
邀请新用户注册赠送积分活动 1510425
关于科研通互助平台的介绍 1473314