A review on the diversity of antimicrobial peptides and genome mining strategies for their prediction

基因组 抗生素耐药性 计算生物学 数据科学 人类健康 生物 计算机科学 生物技术 抗生素 基因 遗传学 医学 环境卫生
作者
Naveen Kumar,Prashant Bhagwat,Suren Singh,Santhosh Pillai
出处
期刊:Biochimie [Elsevier]
卷期号:227 (Pt A): 99-115 被引量:6
标识
DOI:10.1016/j.biochi.2024.06.013
摘要

Antibiotic resistance has become one of the most serious threats to human health in recent years. In response to the increasing microbial resistance to the antibiotics currently available, it is imperative to develop new antibiotics or explore new approaches to combat antibiotic resistance. Antimicrobial peptides (AMPs) have shown considerable promise in this regard, as the microbes develop low or no resistance against them. The discovery and development of AMPs still confront numerous obstacles such as finding a target, developing assays, and identifying hits and leads, which are time-consuming processes, making it difficult to reach the market. However, with the advent of genome mining, new antibiotics could be discovered efficiently using tools such as BAGEL, antiSMASH, RODEO, etc., providing hope for better treatment of diseases in the future. Computational methods used in genome mining automatically detect and annotate biosynthetic gene clusters in genomic data, making it a useful tool in natural product discovery. This review aims to shed light on the history, diversity, and mechanisms of action of AMPs and the data on new AMPs identified by traditional as well as genome mining strategies. It further substantiates the various phases of clinical trials for some AMPs, as well as an overview of genome mining databases and tools built expressly for AMP discovery. In light of the recent advancements, it is evident that targeted genome mining stands as a beacon of hope, offering immense potential to expedite the discovery of novel antimicrobials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CYQQ完成签到,获得积分10
刚刚
1秒前
momo完成签到,获得积分10
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
Yingqian_Zhang完成签到 ,获得积分10
2秒前
3秒前
上官若男应助jiayouya采纳,获得10
3秒前
科研通AI2S应助酷炫冰淇淋采纳,获得10
4秒前
BINGOFAN发布了新的文献求助10
5秒前
5秒前
完美世界应助殷楷霖采纳,获得10
5秒前
WNing发布了新的文献求助10
6秒前
熊熊熊发布了新的文献求助10
6秒前
谢昊宸发布了新的文献求助10
6秒前
酷波er应助爱睡觉的鱼采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
8秒前
爱lx发布了新的文献求助10
8秒前
8秒前
共享精神应助1900采纳,获得10
8秒前
MoonMonth完成签到,获得积分10
9秒前
666发布了新的文献求助10
9秒前
9秒前
9秒前
clock完成签到 ,获得积分10
9秒前
岁峰柒发布了新的文献求助10
10秒前
Pistache33完成签到 ,获得积分10
10秒前
安静的乐松完成签到,获得积分10
10秒前
ericzhangsir完成签到,获得积分10
10秒前
小二郎应助滟滟采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609846
求助须知:如何正确求助?哪些是违规求助? 4694420
关于积分的说明 14882214
捐赠科研通 4720449
什么是DOI,文献DOI怎么找? 2544941
邀请新用户注册赠送积分活动 1509785
关于科研通互助平台的介绍 1473002