A review on the diversity of antimicrobial peptides and genome mining strategies for their prediction

基因组 抗生素耐药性 计算生物学 数据科学 人类健康 生物 计算机科学 生物技术 抗生素 基因 遗传学 医学 环境卫生
作者
Naveen Kumar,Prashant Bhagwat,Suren Singh,Santhosh Pillai
出处
期刊:Biochimie [Elsevier BV]
标识
DOI:10.1016/j.biochi.2024.06.013
摘要

Antibiotic resistance has become one of the most serious threats to human health in recent years. In response to the increasing microbial resistance to the antibiotics currently available, it is imperative to develop new antibiotics or explore new approaches to combat antibiotic resistance. Antimicrobial peptides (AMPs) have shown considerable promise in this regard, as the microbes develop low or no resistance against them. The discovery and development of AMPs still confront numerous obstacles such as finding a target, developing assays, and identifying hits and leads, which are time-consuming processes, making it difficult to reach the market. However, with the advent of genome mining, new antibiotics could be discovered efficiently using tools such as BAGEL, antiSMASH, RODEO, etc., providing hope for better treatment of diseases in the future. Computational methods used in genome mining automatically detect and annotate biosynthetic gene clusters in genomic data, making it a useful tool in natural product discovery. This review aims to shed light on the history, diversity, and mechanisms of action of AMPs and the data on new AMPs identified by traditional as well as genome mining strategies. It further substantiates the various phases of clinical trials for some AMPs, as well as an overview of genome mining databases and tools built expressly for AMP discovery. In light of the recent advancements, it is evident that targeted genome mining stands as a beacon of hope, offering immense potential to expedite the discovery of novel antimicrobials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助1vvvv采纳,获得10
1秒前
2秒前
科研通AI5应助优势构象采纳,获得10
4秒前
5秒前
5秒前
小李老博关注了科研通微信公众号
6秒前
MING_Q发布了新的文献求助10
7秒前
hqh发布了新的文献求助10
10秒前
领导范儿应助William采纳,获得10
10秒前
shawna关注了科研通微信公众号
10秒前
学有所成关注了科研通微信公众号
15秒前
MING_Q完成签到,获得积分10
17秒前
一方完成签到 ,获得积分10
18秒前
华仔应助hqh采纳,获得10
20秒前
世界第一初恋完成签到,获得积分10
22秒前
文献完成签到,获得积分20
23秒前
可爱的函函应助背书强采纳,获得10
24秒前
遇上就这样吧应助wdb采纳,获得10
28秒前
dandna完成签到 ,获得积分10
30秒前
李爱国应助背书强采纳,获得10
34秒前
FashionBoy应助文献采纳,获得10
36秒前
39秒前
李健的小迷弟应助背书强采纳,获得10
43秒前
优势构象发布了新的文献求助10
45秒前
46秒前
汉堡包应助旺仔同学采纳,获得10
47秒前
大模型应助吱吱采纳,获得10
52秒前
王军鹏发布了新的文献求助10
52秒前
777发布了新的文献求助10
52秒前
azure完成签到,获得积分10
53秒前
zqf发布了新的文献求助10
53秒前
白许四十完成签到,获得积分10
54秒前
nino应助Alimeteors采纳,获得10
55秒前
优势构象完成签到,获得积分10
57秒前
59秒前
zhzhzh完成签到,获得积分10
1分钟前
1分钟前
zqf完成签到,获得积分20
1分钟前
科研通AI5应助谢香辣采纳,获得10
1分钟前
岳岳发布了新的文献求助10
1分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738580
求助须知:如何正确求助?哪些是违规求助? 3281930
关于积分的说明 10027083
捐赠科研通 2998733
什么是DOI,文献DOI怎么找? 1645432
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749967