A review on the diversity of antimicrobial peptides and genome mining strategies for their prediction

基因组 抗生素耐药性 计算生物学 数据科学 人类健康 生物 计算机科学 生物技术 抗生素 基因 遗传学 医学 环境卫生
作者
Naveen Kumar,Prashant Bhagwat,Suren Singh,Santhosh Pillai
出处
期刊:Biochimie [Elsevier]
卷期号:227 (Pt A): 99-115 被引量:6
标识
DOI:10.1016/j.biochi.2024.06.013
摘要

Antibiotic resistance has become one of the most serious threats to human health in recent years. In response to the increasing microbial resistance to the antibiotics currently available, it is imperative to develop new antibiotics or explore new approaches to combat antibiotic resistance. Antimicrobial peptides (AMPs) have shown considerable promise in this regard, as the microbes develop low or no resistance against them. The discovery and development of AMPs still confront numerous obstacles such as finding a target, developing assays, and identifying hits and leads, which are time-consuming processes, making it difficult to reach the market. However, with the advent of genome mining, new antibiotics could be discovered efficiently using tools such as BAGEL, antiSMASH, RODEO, etc., providing hope for better treatment of diseases in the future. Computational methods used in genome mining automatically detect and annotate biosynthetic gene clusters in genomic data, making it a useful tool in natural product discovery. This review aims to shed light on the history, diversity, and mechanisms of action of AMPs and the data on new AMPs identified by traditional as well as genome mining strategies. It further substantiates the various phases of clinical trials for some AMPs, as well as an overview of genome mining databases and tools built expressly for AMP discovery. In light of the recent advancements, it is evident that targeted genome mining stands as a beacon of hope, offering immense potential to expedite the discovery of novel antimicrobials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大勺完成签到 ,获得积分10
刚刚
明理的凡霜完成签到,获得积分10
刚刚
sqb完成签到,获得积分10
1秒前
曾经曼梅发布了新的文献求助10
1秒前
1秒前
无极微光应助瘦瘦采纳,获得20
1秒前
连长发布了新的文献求助10
1秒前
Pooh发布了新的文献求助10
1秒前
LYDZ2发布了新的文献求助10
1秒前
2秒前
2秒前
啊棕完成签到,获得积分10
3秒前
SciGPT应助Ttttt采纳,获得10
3秒前
4秒前
dudu完成签到,获得积分10
5秒前
6秒前
无极微光应助婷123采纳,获得20
7秒前
7秒前
多情的奄完成签到,获得积分10
7秒前
情怀应助小乙大夫采纳,获得10
7秒前
Jinnnnn发布了新的文献求助10
7秒前
满天星完成签到,获得积分10
8秒前
TingtingGZ发布了新的文献求助10
9秒前
清河聂氏发布了新的文献求助10
9秒前
pluto应助曾经曼梅采纳,获得10
9秒前
10秒前
丘比特应助自由的尔蓉采纳,获得10
10秒前
孙子豪完成签到,获得积分10
10秒前
11秒前
852应助Lchemistry采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
星辰大海应助动听的寻芹采纳,获得10
11秒前
12秒前
顾矜应助小佳同学采纳,获得10
12秒前
古灵井盖完成签到,获得积分10
12秒前
雄鹰般的女子完成签到,获得积分10
12秒前
13秒前
黄金城完成签到,获得积分10
13秒前
无敌大番茄完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667160
求助须知:如何正确求助?哪些是违规求助? 4884250
关于积分的说明 15118778
捐赠科研通 4826049
什么是DOI,文献DOI怎么找? 2583692
邀请新用户注册赠送积分活动 1537843
关于科研通互助平台的介绍 1496006