A review on the diversity of antimicrobial peptides and genome mining strategies for their prediction

基因组 抗生素耐药性 计算生物学 数据科学 人类健康 生物 计算机科学 生物技术 抗生素 基因 遗传学 医学 环境卫生
作者
Naveen Kumar,Prashant Bhagwat,Suren Singh,Santhosh Pillai
出处
期刊:Biochimie [Elsevier]
标识
DOI:10.1016/j.biochi.2024.06.013
摘要

Antibiotic resistance has become one of the most serious threats to human health in recent years. In response to the increasing microbial resistance to the antibiotics currently available, it is imperative to develop new antibiotics or explore new approaches to combat antibiotic resistance. Antimicrobial peptides (AMPs) have shown considerable promise in this regard, as the microbes develop low or no resistance against them. The discovery and development of AMPs still confront numerous obstacles such as finding a target, developing assays, and identifying hits and leads, which are time-consuming processes, making it difficult to reach the market. However, with the advent of genome mining, new antibiotics could be discovered efficiently using tools such as BAGEL, antiSMASH, RODEO, etc., providing hope for better treatment of diseases in the future. Computational methods used in genome mining automatically detect and annotate biosynthetic gene clusters in genomic data, making it a useful tool in natural product discovery. This review aims to shed light on the history, diversity, and mechanisms of action of AMPs and the data on new AMPs identified by traditional as well as genome mining strategies. It further substantiates the various phases of clinical trials for some AMPs, as well as an overview of genome mining databases and tools built expressly for AMP discovery. In light of the recent advancements, it is evident that targeted genome mining stands as a beacon of hope, offering immense potential to expedite the discovery of novel antimicrobials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
silence发布了新的文献求助10
刚刚
刚刚
CipherSage应助asdasd采纳,获得10
1秒前
李云龙完成签到 ,获得积分10
1秒前
turbo发布了新的文献求助10
2秒前
l991215y完成签到,获得积分10
2秒前
2秒前
3秒前
123131发布了新的文献求助10
3秒前
犹豫海莲发布了新的文献求助10
3秒前
在水一方应助徐银燕采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
bzg发布了新的文献求助10
5秒前
6秒前
6秒前
漏脑之鱼完成签到 ,获得积分10
6秒前
6秒前
高LL完成签到,获得积分10
7秒前
7秒前
酷酷笑旋完成签到,获得积分10
7秒前
7秒前
充电宝应助turbo采纳,获得10
7秒前
老臣完成签到,获得积分10
8秒前
学术小菜鸟完成签到,获得积分20
8秒前
呵呵哒完成签到,获得积分20
8秒前
科目三应助xiaoyuan采纳,获得10
8秒前
今后应助趙途嘵生采纳,获得10
9秒前
asdasd完成签到,获得积分10
9秒前
科研通AI6应助陈秋禹采纳,获得10
9秒前
skyangar发布了新的文献求助10
9秒前
xlx完成签到,获得积分10
10秒前
10秒前
隐形曼青应助mikaqyan采纳,获得10
10秒前
LL发布了新的文献求助10
10秒前
孙帅发布了新的文献求助10
10秒前
zw发布了新的文献求助50
10秒前
呵呵哒发布了新的文献求助10
10秒前
610完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526219
求助须知:如何正确求助?哪些是违规求助? 4616313
关于积分的说明 14553183
捐赠科研通 4554594
什么是DOI,文献DOI怎么找? 2495952
邀请新用户注册赠送积分活动 1476311
关于科研通互助平台的介绍 1447978