A vulnerability detection framework by focusing on critical execution paths

脆弱性(计算) 计算机科学 风险分析(工程) 计算机安全 业务
作者
Jianxin Cheng,Yizhou Chen,Yongzhi Cao,Hanpin Wang
出处
期刊:Information & Software Technology [Elsevier BV]
卷期号:174: 107517-107517
标识
DOI:10.1016/j.infsof.2024.107517
摘要

Vulnerability detection is critical to ensure software security, and detecting vulnerabilities in smart contract code is currently gaining massive attention. Existing deep learning-based vulnerability detection methods represent the code as a code structure graph and eliminate vulnerability-irrelevant nodes. Then, they learn vulnerability-related code features from the simplified graph for vulnerability detection. However, this simplified graph struggles to represent relatively complete structural information of code, which may affect the performance of existing vulnerability detection methods. In this paper, we present a novel Vulnerability Detection framework based on Critical Execution Paths (VDCEP), which aims to improve smart contract vulnerability detection. Firstly, given a code structure graph, we deconstruct it into multiple execution paths that reflect rich structural information of code. To reduce irrelevant code information, a path selection strategy is employed to identify critical execution paths that may contain vulnerable code information. Secondly, a feature extraction module is adopted to learn feature representations of critical paths. Finally, we feed all path feature representations into a classifier for vulnerability detection. Also, the feature weights of paths are provided to measure their importance in vulnerability detection. We evaluate VDCEP on a large dataset with four types of smart contract vulnerabilities. Results show that VDCEP outperforms 14 representative vulnerability detection methods by 5.34%–60.88% in F1-score. The ablation studies analyze the effects of our path selection strategy and feature extraction module on VDCEP. Moreover, VDCEP still outperforms ChatGPT by 34.46% in F1-score. Compared to existing vulnerability detection methods, VDCEP is more effective in detecting smart contract vulnerabilities by utilizing critical execution paths. Besides, we can provide interpretable details about vulnerability detection by analyzing the path feature weights.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
晓槐发布了新的文献求助10
1秒前
1秒前
1秒前
半枝桃完成签到,获得积分10
2秒前
雨声完成签到 ,获得积分10
2秒前
上官若男应助李闻闻采纳,获得10
2秒前
迷人嫣然发布了新的文献求助10
4秒前
xi发布了新的文献求助10
4秒前
Chaos发布了新的文献求助10
5秒前
淡然水绿发布了新的文献求助10
6秒前
George完成签到,获得积分10
6秒前
7秒前
梦梦发布了新的文献求助10
7秒前
完美世界应助说话请投币采纳,获得10
7秒前
何白发布了新的文献求助10
8秒前
多多完成签到,获得积分10
8秒前
星辰大海应助wuxunxun2015采纳,获得30
8秒前
晓槐完成签到,获得积分10
8秒前
朱子完成签到,获得积分10
9秒前
七栀完成签到,获得积分10
9秒前
寻悦发布了新的文献求助10
9秒前
fge完成签到,获得积分10
10秒前
浮游应助第七个星球采纳,获得10
10秒前
辰昜完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
爬得飞快的仲文博完成签到,获得积分10
12秒前
13秒前
完美世界应助疯狂的天宇采纳,获得10
13秒前
ALL发布了新的文献求助10
14秒前
14秒前
Maize Man完成签到,获得积分10
14秒前
14秒前
李yu发布了新的文献求助10
14秒前
15秒前
15秒前
憨憨猫发布了新的文献求助10
15秒前
15秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204858
求助须知:如何正确求助?哪些是违规求助? 4383758
关于积分的说明 13650861
捐赠科研通 4241754
什么是DOI,文献DOI怎么找? 2327024
邀请新用户注册赠送积分活动 1324769
关于科研通互助平台的介绍 1276983