A vulnerability detection framework by focusing on critical execution paths

脆弱性(计算) 计算机科学 风险分析(工程) 计算机安全 业务
作者
Jianxin Cheng,Yizhou Chen,Yongzhi Cao,Hanpin Wang
出处
期刊:Information & Software Technology [Elsevier BV]
卷期号:174: 107517-107517
标识
DOI:10.1016/j.infsof.2024.107517
摘要

Vulnerability detection is critical to ensure software security, and detecting vulnerabilities in smart contract code is currently gaining massive attention. Existing deep learning-based vulnerability detection methods represent the code as a code structure graph and eliminate vulnerability-irrelevant nodes. Then, they learn vulnerability-related code features from the simplified graph for vulnerability detection. However, this simplified graph struggles to represent relatively complete structural information of code, which may affect the performance of existing vulnerability detection methods. In this paper, we present a novel Vulnerability Detection framework based on Critical Execution Paths (VDCEP), which aims to improve smart contract vulnerability detection. Firstly, given a code structure graph, we deconstruct it into multiple execution paths that reflect rich structural information of code. To reduce irrelevant code information, a path selection strategy is employed to identify critical execution paths that may contain vulnerable code information. Secondly, a feature extraction module is adopted to learn feature representations of critical paths. Finally, we feed all path feature representations into a classifier for vulnerability detection. Also, the feature weights of paths are provided to measure their importance in vulnerability detection. We evaluate VDCEP on a large dataset with four types of smart contract vulnerabilities. Results show that VDCEP outperforms 14 representative vulnerability detection methods by 5.34%–60.88% in F1-score. The ablation studies analyze the effects of our path selection strategy and feature extraction module on VDCEP. Moreover, VDCEP still outperforms ChatGPT by 34.46% in F1-score. Compared to existing vulnerability detection methods, VDCEP is more effective in detecting smart contract vulnerabilities by utilizing critical execution paths. Besides, we can provide interpretable details about vulnerability detection by analyzing the path feature weights.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助YTT采纳,获得10
刚刚
1秒前
jacob258完成签到 ,获得积分10
1秒前
2秒前
大闲鱼铭一完成签到 ,获得积分10
2秒前
Donson_Li发布了新的文献求助10
2秒前
2秒前
bean完成签到 ,获得积分10
2秒前
3秒前
3秒前
华仔应助清脆惜寒采纳,获得10
4秒前
cxm发布了新的文献求助10
4秒前
大力黑米完成签到,获得积分10
4秒前
饱饱发布了新的文献求助10
4秒前
apple发布了新的文献求助10
4秒前
4秒前
酷波er应助carrotleah采纳,获得30
4秒前
FashionBoy应助嘟噜采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
ZETA完成签到,获得积分10
5秒前
5秒前
lj发布了新的文献求助10
6秒前
温茶青盏发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
152发布了新的文献求助10
7秒前
8秒前
8秒前
科研通AI5应助fzzf采纳,获得10
9秒前
honey发布了新的文献求助10
9秒前
9秒前
PAD完成签到,获得积分10
10秒前
毛子涵发布了新的文献求助10
10秒前
10秒前
陈雪琪发布了新的文献求助10
11秒前
11秒前
YTT发布了新的文献求助10
11秒前
11秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4884349
求助须知:如何正确求助?哪些是违规求助? 4169639
关于积分的说明 12938456
捐赠科研通 3930085
什么是DOI,文献DOI怎么找? 2156455
邀请新用户注册赠送积分活动 1174796
关于科研通互助平台的介绍 1079610