High performance piezoelectric nanogenerator by fiber microstructure engineering toward self-powered wireless sensing system

纳米发生器 材料科学 压电 能量收集 无线 锆钛酸铅 复合数 光电子学 无线传感器网络 工程物理 电气工程 复合材料 计算机科学 能量(信号处理) 电信 工程类 电介质 计算机网络 统计 数学 铁电性
作者
Jintao Xia,Haowei Lu,Gaoru Chen,Dazeng Lin,Wenlong Yang,Chang Liu,Benlin Hu,Yini Zhao
出处
期刊:Nano Energy [Elsevier]
卷期号:128: 109901-109901 被引量:8
标识
DOI:10.1016/j.nanoen.2024.109901
摘要

Piezoelectric nanogenerator (PENG) with these advantages of low cost, small volume and stable output in extreme environment is constantly required to develop self-powered sensing system in Internet of Things (IoT), which can relieve energy crisis and reduce labor maintenance costs. However, low electrical output of PENG severely restricts its application and has been a key challenge in the development of PENG. To attain high output performance, a new PENG based on core-shell heterostructure of barium titanate(BT)/polyvinylidene fluoride(PVDF) composite fibers coated with BT@Ag was designed for energy harvesting and wireless sensing application. The outputs of PENG with this special structure are enhanced near 3 times than that of PENG based on traditional fibers, benefiting from the enhanced induced-polarization and stress transfer mechanism in PENG, which is confirmed by experimental results and explained by multi-physics simulations. Moreover, the PENG can effectively harvest wind and acoustic energy, which can deliver the high outputs of 107.5 V and 16.18 µA under 12 m/s wind speed, 45.4 V and 6.5 µA under 110 dB sound pressure, respectively. To verify the practicability of the PENG, a whole self-powered wireless sensing system based on the PENG to harvest energy in environment was demonstrated, where the signal of humidity condition of soil can be sensed periodically and transmitted to mobile phone for further analysis. This work provides an effective strategy to boost performance of PENG and further paves a route about advanced self-powered wireless sensing technology in IoT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
123cxj完成签到,获得积分10
4秒前
CO2发布了新的文献求助10
4秒前
summer发布了新的文献求助10
4秒前
5秒前
Xx.发布了新的文献求助10
5秒前
大大关注了科研通微信公众号
5秒前
稚祎完成签到 ,获得积分10
5秒前
5秒前
CodeCraft应助东东采纳,获得10
6秒前
7秒前
叽里咕噜完成签到 ,获得积分10
8秒前
田様应助zccc采纳,获得10
9秒前
隐形的雁完成签到,获得积分10
9秒前
追寻的秋玲完成签到,获得积分10
10秒前
李繁蕊发布了新的文献求助10
10秒前
11秒前
舒心的紫雪完成签到 ,获得积分10
12秒前
12秒前
14秒前
14秒前
15秒前
不上课不行完成签到,获得积分10
16秒前
再干一杯完成签到,获得积分10
16秒前
17秒前
汉堡包应助rudjs采纳,获得10
18秒前
18秒前
zsyzxb发布了新的文献求助10
19秒前
东东发布了新的文献求助10
19秒前
zena92发布了新的文献求助10
20秒前
锤子米完成签到,获得积分10
20秒前
20秒前
赤练仙子完成签到,获得积分10
22秒前
MnO2fff应助zsyzxb采纳,获得20
25秒前
kingwill应助zsyzxb采纳,获得20
25秒前
顺利鱼完成签到,获得积分10
26秒前
28秒前
29秒前
Xx.完成签到,获得积分10
30秒前
星辰大海应助内向凌兰采纳,获得10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808